update main.py
This commit is contained in:
parent
5879afffe6
commit
74db6d9893
112
rag/src/main.py
112
rag/src/main.py
@ -5,87 +5,67 @@ import numpy as np
|
|||||||
from typing import Tuple
|
from typing import Tuple
|
||||||
from sentence_transformers import SentenceTransformer
|
from sentence_transformers import SentenceTransformer
|
||||||
|
|
||||||
from config.config import knowledge_json_path, knowledge_pkl_path, model_repo
|
from config.config import knowledge_json_path, knowledge_pkl_path, model_repo, model_dir, base_dir
|
||||||
from util.encode import load_embedding, encode_qa
|
from util.encode import load_embedding, encode_qa
|
||||||
from util.pipeline import EmoLLMRAG
|
from util.pipeline import EmoLLMRAG
|
||||||
|
from loguru import logger
|
||||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
import torch
|
import torch
|
||||||
import streamlit as st
|
import streamlit as st
|
||||||
from openxlab.model import download
|
from openxlab.model import download
|
||||||
|
from data_processing import load_index_and_knowledge, create_index_cpu, create_index_gpu, find_top_k, rerank
|
||||||
|
from config.config import embedding_path, doc_dir, qa_dir, knowledge_pkl_path, data_dir
|
||||||
|
|
||||||
download(
|
'''
|
||||||
model_repo=model_repo,
|
1)构建完整的 RAG pipeline。输入为用户 query,输出为 answer
|
||||||
output='model'
|
2)调用 embedding 提供的接口对 query 向量化
|
||||||
)
|
3)下载基于 FAISS 预构建的 vector DB ,并检索对应信息
|
||||||
|
4)调用 rerank 接口重排序检索内容
|
||||||
|
5)调用 prompt 接口获取 system prompt 和 prompt template
|
||||||
|
6)拼接 prompt 并调用模型返回结果
|
||||||
|
|
||||||
|
'''
|
||||||
"""
|
# download(
|
||||||
读取知识库
|
# model_repo=model_repo,
|
||||||
"""
|
# output='model'
|
||||||
def load_knowledge() -> Tuple[list, list]:
|
# )
|
||||||
# 如果 pkl 不存在,则先编码存储
|
|
||||||
if not os.path.exists(knowledge_pkl_path):
|
|
||||||
encode_qa(knowledge_json_path, knowledge_pkl_path)
|
|
||||||
|
|
||||||
# 加载 json 和 pkl
|
|
||||||
with open(knowledge_json_path, 'r', encoding='utf-8') as f1, open(knowledge_pkl_path, 'rb') as f2:
|
|
||||||
knowledge = json.load(f1)
|
|
||||||
encoded_knowledge = pickle.load(f2)
|
|
||||||
return knowledge, encoded_knowledge
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
召回 top_k 个相关的文本段
|
|
||||||
"""
|
|
||||||
def find_top_k(
|
|
||||||
emb: SentenceTransformer,
|
|
||||||
query: str,
|
|
||||||
knowledge: list,
|
|
||||||
encoded_knowledge: list,
|
|
||||||
k=3
|
|
||||||
) -> list[str]:
|
|
||||||
# 编码 query
|
|
||||||
query_embedding = emb.encode(query)
|
|
||||||
|
|
||||||
# 查找 top_k
|
|
||||||
scores = query_embedding @ encoded_knowledge.T
|
|
||||||
# 使用 argpartition 找出每行第 k 个大的值的索引,第 k 个位置左侧都是比它大的值,右侧都是比它小的值
|
|
||||||
top_k_indices = np.argpartition(scores, -k)[-k:]
|
|
||||||
# 由于 argpartition 不保证顺序,我们需要对提取出的 k 个索引进行排序
|
|
||||||
top_k_values_sorted_indices = np.argsort(scores[top_k_indices])[::-1]
|
|
||||||
top_k_indices = top_k_indices[top_k_values_sorted_indices]
|
|
||||||
|
|
||||||
# 返回
|
|
||||||
contents = [knowledge[index] for index in top_k_indices]
|
|
||||||
return contents
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
emb = load_embedding()
|
|
||||||
knowledge, encoded_knowledge = load_knowledge()
|
|
||||||
query = "认知心理学研究哪些心理活动?"
|
|
||||||
contents = find_top_k(emb, query, knowledge, encoded_knowledge, 2)
|
|
||||||
print('召回的 top-k 条相关内容如下:')
|
|
||||||
print(json.dumps(contents, ensure_ascii=False, indent=2))
|
|
||||||
# 这里我没实现 LLM 部分,如果有 LLM
|
|
||||||
## 1. 读取 LLM
|
|
||||||
## 2. 将 contents 拼接为 prompt,传给 LLM,作为 {已知内容}
|
|
||||||
## 3. 要求 LLM 根据已知内容回复
|
|
||||||
|
|
||||||
@st.cache_resource
|
@st.cache_resource
|
||||||
def load_model():
|
def load_model():
|
||||||
|
model_dir = os.path.join(base_dir,'../model')
|
||||||
|
logger.info(f'Loading model from {model_dir}')
|
||||||
model = (
|
model = (
|
||||||
AutoModelForCausalLM.from_pretrained("model", trust_remote_code=True)
|
AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True)
|
||||||
.to(torch.bfloat16)
|
.to(torch.bfloat16)
|
||||||
.cuda()
|
.cuda()
|
||||||
)
|
)
|
||||||
tokenizer = AutoTokenizer.from_pretrained("model", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
if __name__ == '__main__':
|
def get_prompt():
|
||||||
#main()
|
pass
|
||||||
query = ''
|
|
||||||
|
def get_prompt_template():
|
||||||
|
pass
|
||||||
|
|
||||||
|
def main(query, system_prompt):
|
||||||
model, tokenizer = load_model()
|
model, tokenizer = load_model()
|
||||||
rag_obj = EmoLLMRAG(model)
|
model = model.eval()
|
||||||
response = rag_obj.main(query)
|
if not os.path.exists(data_dir):
|
||||||
|
os.mkdir(data_dir)
|
||||||
|
# 下载基于 FAISS 预构建的 vector DB 以及原始知识库
|
||||||
|
faiss_index, knowledge_chunks = load_index_and_knowledge()
|
||||||
|
distances, indices = find_top_k(query, faiss_index, 5)
|
||||||
|
rerank_results = rerank(query, indices, knowledge_chunks)
|
||||||
|
messages = [(system_prompt, rerank_results['rerank_passages'][0])]
|
||||||
|
logger.info(f'messages:{messages}')
|
||||||
|
response, history = model.chat(tokenizer, query, history=messages)
|
||||||
|
messages.append((query, response))
|
||||||
|
print(f"robot >>> {response}")
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# query = '你好'
|
||||||
|
query = "心理咨询师,我觉得我的胸闷症状越来越严重了,这让我很害怕"
|
||||||
|
#TODO system_prompt = get_prompt()
|
||||||
|
system_prompt = "你是一个由aJupyter、Farewell、jujimeizuo、Smiling&Weeping研发(排名按字母顺序排序,不分先后)、散步提供技术支持、上海人工智能实验室提供支持开发的心理健康大模型。现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。"
|
||||||
|
main(query, system_prompt)
|
Loading…
Reference in New Issue
Block a user