commit
4e8271a540
@ -40,3 +40,21 @@
|
||||
* 数据集 aiwei 来自本项目
|
||||
* 数据集 tiangou 来自本项目
|
||||
* 数据集 SoulStar 来源 [SoulStar](https://github.com/Nobody-ML/SoulStar)
|
||||
|
||||
## 数据集去重
|
||||
结合绝对匹配以及模糊匹配(Simhash)算法,对数据集进行去重以提升微调模型的效果。在确保数据集的高质量的同时,通过调整阈值减少因错误匹配而丢失重要数据的风险。
|
||||
|
||||
Simhash算法
|
||||
Simhash(相似性哈希)是一种用于检测大量数据中相似或重复项的算法。它通过将文本转换为一组数值指纹来工作,这些指纹对相似的文本具有高度的相似性。Simhash算法对于处理文本数据特别有效,尤其是在处理大量数据时。
|
||||
|
||||
实现步骤:
|
||||
文本预处理:将文本数据转换为适合Simhash处理的格式。这可能包括分词、去除停用词、词干提取等。
|
||||
|
||||
生成Simhash指纹:对预处理后的文本应用Simhash算法,生成一组数值指纹。每个指纹代表文本内容的一个哈希值。
|
||||
|
||||
比较指纹:通过比较哈希值的相似性来识别重复或相似的记录。Simhash的特点是即使在文本有少量差异时,生成的哈希值也具有较高的相似性。
|
||||
|
||||
确定阈值:设置一个相似性阈值,只有当两个指纹的相似度超过这个阈值时,才认为它们代表相似或重复的记录。
|
||||
|
||||
处理相似记录:对于被标记为相似的记录,可以进一步人工审查或自动合并,以消除重复。
|
||||
|
||||
|
@ -41,3 +41,8 @@
|
||||
* dataset `aiwei` from this repo
|
||||
* dataset `tiangou` from this repo
|
||||
* dataset `SoulStar` from [SoulStar](https://github.com/Nobody-ML/SoulStar)
|
||||
|
||||
**Dataset Deduplication**:
|
||||
Combine absolute matching with fuzzy matching (Simhash) algorithms to deduplicate the dataset, thereby enhancing the effectiveness of the fine-tuning model. While ensuring the high quality of the dataset, the risk of losing important data due to incorrect matches can be reduced via adjusting the threshold.
|
||||
|
||||
https://algonotes.readthedocs.io/en/latest/Simhash.html
|
@ -1,262 +1,270 @@
|
||||
import json
|
||||
import pickle
|
||||
import faiss
|
||||
import pickle
|
||||
import os
|
||||
|
||||
from loguru import logger
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
from langchain_community.vectorstores import FAISS
|
||||
from config.config import embedding_path, doc_dir, qa_dir, knowledge_pkl_path, data_dir, base_dir, vector_db_dir
|
||||
import os
|
||||
import faiss
|
||||
import platform
|
||||
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
||||
from langchain_community.document_loaders import DirectoryLoader, TextLoader, JSONLoader
|
||||
from langchain_text_splitters import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
||||
from langchain_text_splitters import CharacterTextSplitter, RecursiveCharacterTextSplitter, RecursiveJsonSplitter
|
||||
from BCEmbedding import EmbeddingModel, RerankerModel
|
||||
from util.pipeline import EmoLLMRAG
|
||||
import pickle
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
import torch
|
||||
import streamlit as st
|
||||
from openxlab.model import download
|
||||
|
||||
|
||||
'''
|
||||
1)根据QA对/TXT 文本生成 embedding
|
||||
2)调用 langchain FAISS 接口构建 vector DB
|
||||
3)存储到 openxlab.dataset 中,方便后续调用
|
||||
4)提供 embedding 的接口函数,方便后续调用
|
||||
5)提供 rerank 的接口函数,方便后续调用
|
||||
'''
|
||||
|
||||
"""
|
||||
加载向量模型
|
||||
"""
|
||||
def load_embedding_model():
|
||||
logger.info('Loading embedding model...')
|
||||
# model = EmbeddingModel(model_name_or_path="huggingface/bce-embedding-base_v1")
|
||||
model = EmbeddingModel(model_name_or_path="maidalun1020/bce-embedding-base_v1")
|
||||
logger.info('Embedding model loaded.')
|
||||
return model
|
||||
|
||||
def load_rerank_model():
|
||||
logger.info('Loading rerank_model...')
|
||||
model = RerankerModel(model_name_or_path="maidalun1020/bce-reranker-base_v1")
|
||||
# model = RerankerModel(model_name_or_path="huggingface/bce-reranker-base_v1")
|
||||
logger.info('Rerank model loaded.')
|
||||
return model
|
||||
|
||||
|
||||
def split_document(data_path, chunk_size=1000, chunk_overlap=100):
|
||||
# text_spliter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
||||
text_spliter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
||||
split_docs = []
|
||||
logger.info(f'Loading txt files from {data_path}')
|
||||
if os.path.isdir(data_path):
|
||||
# 如果是文件夹,则遍历读取
|
||||
for root, dirs, files in os.walk(data_path):
|
||||
for file in files:
|
||||
if file.endswith('.txt'):
|
||||
file_path = os.path.join(root, file)
|
||||
# logger.info(f'splitting file {file_path}')
|
||||
text_loader = TextLoader(file_path, encoding='utf-8')
|
||||
text = text_loader.load()
|
||||
|
||||
splits = text_spliter.split_documents(text)
|
||||
# logger.info(f"splits type {type(splits[0])}")
|
||||
# logger.info(f'splits size {len(splits)}')
|
||||
split_docs += splits
|
||||
elif data_path.endswith('.txt'):
|
||||
file_path = os.path.join(root, data_path)
|
||||
# logger.info(f'splitting file {file_path}')
|
||||
text_loader = TextLoader(file_path, encoding='utf-8')
|
||||
text = text_loader.load()
|
||||
splits = text_spliter.split_documents(text)
|
||||
# logger.info(f"splits type {type(splits[0])}")
|
||||
# logger.info(f'splits size {len(splits)}')
|
||||
split_docs = splits
|
||||
logger.info(f'split_docs size {len(split_docs)}')
|
||||
return split_docs
|
||||
|
||||
|
||||
##TODO 1、读取system prompt 2、限制序列长度
|
||||
def split_conversation(path):
|
||||
'''
|
||||
data format:
|
||||
[
|
||||
{
|
||||
"conversation": [
|
||||
{
|
||||
"input": Q1
|
||||
"output": A1
|
||||
},
|
||||
{
|
||||
"input": Q2
|
||||
"output": A2
|
||||
},
|
||||
]
|
||||
},
|
||||
]
|
||||
'''
|
||||
qa_pairs = []
|
||||
logger.info(f'Loading json files from {path}')
|
||||
if os.path.isfile(path):
|
||||
with open(path, 'r', encoding='utf-8') as file:
|
||||
data = json.load(file)
|
||||
for conversation in data:
|
||||
for dialog in conversation['conversation']:
|
||||
# input_text = dialog['input']
|
||||
# output_text = dialog['output']
|
||||
# if len(input_text) > max_length or len(output_text) > max_length:
|
||||
# continue
|
||||
qa_pairs.append(dialog)
|
||||
elif os.path.isdir(path):
|
||||
# 如果是文件夹,则遍历读取
|
||||
for root, dirs, files in os.walk(path):
|
||||
for file in files:
|
||||
if file.endswith('.json'):
|
||||
file_path = os.path.join(root, file)
|
||||
logger.info(f'splitting file {file_path}')
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
data = json.load(f)
|
||||
for conversation in data:
|
||||
for dialog in conversation['conversation']:
|
||||
qa_pairs.append(dialog)
|
||||
return qa_pairs
|
||||
|
||||
from langchain.document_loaders.pdf import PyPDFDirectoryLoader
|
||||
from langchain.document_loaders import UnstructuredFileLoader,DirectoryLoader
|
||||
from langchain_community.llms import Cohere
|
||||
from langchain.retrievers import ContextualCompressionRetriever
|
||||
from langchain.retrievers.document_compressors import FlashrankRerank
|
||||
from langchain_core.documents.base import Document
|
||||
from FlagEmbedding import FlagReranker
|
||||
|
||||
class Data_process():
|
||||
def __init__(self):
|
||||
self.vector_db_dir = vector_db_dir
|
||||
self.doc_dir = doc_dir
|
||||
self.qa_dir = qa_dir
|
||||
self.knowledge_pkl_path = knowledge_pkl_path
|
||||
self.chunk_size: int=1000
|
||||
self.chunk_overlap: int=100
|
||||
|
||||
# 加载本地索引
|
||||
def load_index_and_knowledge():
|
||||
current_os = platform.system()
|
||||
split_doc = []
|
||||
split_qa = []
|
||||
#读取知识库
|
||||
if not os.path.exists(knowledge_pkl_path):
|
||||
split_doc = split_document(doc_dir)
|
||||
split_qa = split_conversation(qa_dir)
|
||||
# logger.info(f'split_qa size:{len(split_qa)}')
|
||||
# logger.info(f'type of split_qa:{type(split_qa[0])}')
|
||||
# logger.info(f'split_doc size:{len(split_doc)}')
|
||||
# logger.info(f'type of doc:{type(split_doc[0])}')
|
||||
knowledge_chunks = split_doc + split_qa
|
||||
with open(knowledge_pkl_path, 'wb') as file:
|
||||
pickle.dump(knowledge_chunks, file)
|
||||
else:
|
||||
with open(knowledge_pkl_path , 'rb') as f:
|
||||
knowledge_chunks = pickle.load(f)
|
||||
def load_embedding_model(self, model_name="BAAI/bge-small-zh-v1.5", device='cpu', normalize_embeddings=True):
|
||||
"""
|
||||
加载嵌入模型。
|
||||
|
||||
#读取vector DB
|
||||
if not os.path.exists(vector_db_dir):
|
||||
参数:
|
||||
- model_name: 模型名称,字符串类型,默认为"BAAI/bge-small-zh-v1.5"。
|
||||
- device: 指定模型加载的设备,'cpu' 或 'cuda',默认为'cpu'。
|
||||
- normalize_embeddings: 是否标准化嵌入向量,布尔类型,默认为 True。
|
||||
"""
|
||||
logger.info('Loading embedding model...')
|
||||
try:
|
||||
embeddings = HuggingFaceBgeEmbeddings(
|
||||
model_name=model_name,
|
||||
model_kwargs={'device': device},
|
||||
encode_kwargs={'normalize_embeddings': normalize_embeddings}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f'Failed to load embedding model: {e}')
|
||||
return None
|
||||
|
||||
logger.info('Embedding model loaded.')
|
||||
return embeddings
|
||||
|
||||
def load_rerank_model(self, model_name='BAAI/bge-reranker-large'):
|
||||
"""
|
||||
加载重排名模型。
|
||||
|
||||
参数:
|
||||
- model_name (str): 模型的名称。默认为 'BAAI/bge-reranker-large'。
|
||||
|
||||
返回:
|
||||
- FlagReranker 实例。
|
||||
|
||||
异常:
|
||||
- ValueError: 如果模型名称不在批准的模型列表中。
|
||||
- Exception: 如果模型加载过程中发生任何其他错误。
|
||||
"""
|
||||
try:
|
||||
reranker_model = FlagReranker(model_name, use_fp16=True)
|
||||
except Exception as e:
|
||||
logger.error(f'Failed to load rerank model: {e}')
|
||||
raise
|
||||
|
||||
return reranker_model
|
||||
|
||||
|
||||
def extract_text_from_json(self, obj, content=None):
|
||||
"""
|
||||
抽取json中的文本,用于向量库构建
|
||||
|
||||
参数:
|
||||
- obj: dict,list,str
|
||||
- content: str
|
||||
|
||||
返回:
|
||||
- content: str
|
||||
"""
|
||||
if isinstance(obj, dict):
|
||||
for key, value in obj.items():
|
||||
try:
|
||||
self.extract_text_from_json(value, content)
|
||||
except Exception as e:
|
||||
print(f"Error processing value: {e}")
|
||||
elif isinstance(obj, list):
|
||||
for index, item in enumerate(obj):
|
||||
try:
|
||||
self.extract_text_from_json(item, content)
|
||||
except Exception as e:
|
||||
print(f"Error processing item: {e}")
|
||||
elif isinstance(obj, str):
|
||||
content += obj
|
||||
return content
|
||||
|
||||
|
||||
def split_document(self, data_path, chunk_size=500, chunk_overlap=100):
|
||||
"""
|
||||
切分data_path文件夹下的所有txt文件
|
||||
|
||||
参数:
|
||||
- data_path: str
|
||||
- chunk_size: int
|
||||
- chunk_overlap: int
|
||||
|
||||
返回:
|
||||
- split_docs: list
|
||||
"""
|
||||
|
||||
|
||||
# text_spliter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
||||
text_spliter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
||||
split_docs = []
|
||||
logger.info(f'Loading txt files from {data_path}')
|
||||
if os.path.isdir(data_path):
|
||||
loader = DirectoryLoader(data_path, glob="**/*.txt",show_progress=True)
|
||||
docs = loader.load()
|
||||
split_docs = text_spliter.split_documents(docs)
|
||||
elif data_path.endswith('.txt'):
|
||||
file_path = data_path
|
||||
logger.info(f'splitting file {file_path}')
|
||||
text_loader = TextLoader(file_path, encoding='utf-8')
|
||||
text = text_loader.load()
|
||||
splits = text_spliter.split_documents(text)
|
||||
split_docs = splits
|
||||
logger.info(f'split_docs size {len(split_docs)}')
|
||||
return split_docs
|
||||
|
||||
|
||||
def split_conversation(self, path):
|
||||
"""
|
||||
按conversation块切分path文件夹下的所有json文件
|
||||
##TODO 限制序列长度
|
||||
"""
|
||||
# json_spliter = RecursiveJsonSplitter(max_chunk_size=500)
|
||||
logger.info(f'Loading json files from {path}')
|
||||
split_qa = []
|
||||
if os.path.isdir(path):
|
||||
# loader = DirectoryLoader(path, glob="**/*.json",show_progress=True)
|
||||
# jsons = loader.load()
|
||||
|
||||
for root, dirs, files in os.walk(path):
|
||||
for file in files:
|
||||
if file.endswith('.json'):
|
||||
file_path = os.path.join(root, file)
|
||||
logger.info(f'splitting file {file_path}')
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
data = json.load(f)
|
||||
print(data)
|
||||
for conversation in data:
|
||||
# for dialog in conversation['conversation']:
|
||||
##按qa对切分,将每一轮qa转换为langchain_core.documents.base.Document
|
||||
# content = self.extract_text_from_json(dialog,'')
|
||||
# split_qa.append(Document(page_content = content))
|
||||
#按conversation块切分
|
||||
content = self.extract_text_from_json(conversation['conversation'], '')
|
||||
split_qa.append(Document(page_content = content))
|
||||
# logger.info(f'split_qa size====={len(split_qa)}')
|
||||
return split_qa
|
||||
|
||||
|
||||
def load_knowledge(self, knowledge_pkl_path):
|
||||
'''
|
||||
读取或创建知识.pkl
|
||||
'''
|
||||
if not os.path.exists(knowledge_pkl_path):
|
||||
split_doc = self.split_document(doc_dir)
|
||||
split_qa = self.split_conversation(qa_dir)
|
||||
knowledge_chunks = split_doc + split_qa
|
||||
with open(knowledge_pkl_path, 'wb') as file:
|
||||
pickle.dump(knowledge_chunks, file)
|
||||
else:
|
||||
with open(knowledge_pkl_path , 'rb') as f:
|
||||
knowledge_chunks = pickle.load(f)
|
||||
return knowledge_chunks
|
||||
|
||||
|
||||
def create_vector_db(self, emb_model):
|
||||
'''
|
||||
创建并保存向量库
|
||||
'''
|
||||
logger.info(f'Creating index...')
|
||||
emb_model = load_embedding_model()
|
||||
if not split_doc:
|
||||
split_doc = split_document(doc_dir)
|
||||
if not split_qa:
|
||||
split_qa = split_conversation(qa_dir)
|
||||
# 创建索引,windows不支持faiss-gpu
|
||||
if current_os == 'Linux':
|
||||
index = create_index_gpu(split_doc, split_qa, emb_model, vector_db_dir)
|
||||
else:
|
||||
index = create_index_cpu(split_doc, split_qa, emb_model, vector_db_dir)
|
||||
else:
|
||||
if current_os == 'Linux':
|
||||
res = faiss.StandardGpuResources()
|
||||
index = faiss.index_cpu_to_gpu(res, 0, index, vector_db_dir)
|
||||
else:
|
||||
index = faiss.read_index(vector_db_dir)
|
||||
|
||||
return index, knowledge_chunks
|
||||
|
||||
|
||||
def create_index_cpu(split_doc, split_qa, emb_model, knowledge_pkl_path, dimension = 768, question_only=False):
|
||||
# 假设BCE嵌入的维度是768,根据你选择的模型可能不同
|
||||
faiss_index_cpu = faiss.IndexFlatIP(dimension) # 创建一个使用内积的FAISS索引
|
||||
# 将问答对转换为向量并添加到FAISS索引中
|
||||
for doc in split_doc:
|
||||
# type_of_docs = type(split_doc)
|
||||
text = f"{doc.page_content}"
|
||||
vector = emb_model.encode([text])
|
||||
faiss_index_cpu.add(vector)
|
||||
for qa in split_qa:
|
||||
#仅对Q对进行编码
|
||||
text = f"{qa['input']}"
|
||||
vector = emb_model.encode([text])
|
||||
faiss_index_cpu.add(vector)
|
||||
faiss.write_index(faiss_index_cpu, knowledge_pkl_path)
|
||||
return faiss_index_cpu
|
||||
|
||||
def create_index_gpu(split_doc, split_qa, emb_model, knowledge_pkl_path, dimension = 768, question_only=False):
|
||||
res = faiss.StandardGpuResources()
|
||||
index = faiss.IndexFlatIP(dimension)
|
||||
faiss_index_gpu = faiss.index_cpu_to_gpu(res, 0, index)
|
||||
for doc in split_doc:
|
||||
# type_of_docs = type(split_doc)
|
||||
text = f"{doc.page_content}"
|
||||
vector = emb_model.encode([text])
|
||||
faiss_index_gpu.add(vector)
|
||||
for qa in split_qa:
|
||||
#仅对Q对进行编码
|
||||
text = f"{qa['input']}"
|
||||
vector = emb_model.encode([text])
|
||||
faiss_index_gpu.add(vector)
|
||||
faiss.write_index(faiss_index_gpu, knowledge_pkl_path)
|
||||
return faiss_index_gpu
|
||||
|
||||
|
||||
|
||||
# 根据query搜索相似文本
|
||||
def find_top_k(query, faiss_index, k=5):
|
||||
emb_model = load_embedding_model()
|
||||
emb_query = emb_model.encode([query])
|
||||
distances, indices = faiss_index.search(emb_query, k)
|
||||
return distances, indices
|
||||
|
||||
def rerank(query, indices, knowledge_chunks):
|
||||
passages = []
|
||||
for index in indices[0]:
|
||||
content = knowledge_chunks[index]
|
||||
split_doc = self.split_document(self.doc_dir)
|
||||
split_qa = self.split_conversation(self.qa_dir)
|
||||
# logger.info(f'split_doc == {len(split_doc)}')
|
||||
# logger.info(f'split_qa == {len(split_qa)}')
|
||||
# logger.info(f'split_doc type == {type(split_doc[0])}')
|
||||
# logger.info(f'split_qa type== {type(split_qa[0])}')
|
||||
db = FAISS.from_documents(split_doc + split_qa, emb_model)
|
||||
db.save_local(vector_db_dir)
|
||||
return db
|
||||
|
||||
|
||||
def load_vector_db(self, knowledge_pkl_path=knowledge_pkl_path, doc_dir=doc_dir, qa_dir=qa_dir):
|
||||
'''
|
||||
txt: 'langchain_core.documents.base.Document'
|
||||
json: dict
|
||||
读取向量库
|
||||
'''
|
||||
# logger.info(f'retrieved content:{content}')
|
||||
# logger.info(f'type of content:{type(content)}')
|
||||
if type(content) == dict:
|
||||
content = content["input"] + '\n' + content["output"]
|
||||
# current_os = platform.system()
|
||||
emb_model = self.load_embedding_model()
|
||||
if not os.path.exists(vector_db_dir) or not os.listdir(vector_db_dir):
|
||||
db = self.create_vector_db(emb_model)
|
||||
else:
|
||||
content = content.page_content
|
||||
passages.append(content)
|
||||
db = FAISS.load_local(vector_db_dir, emb_model, allow_dangerous_deserialization=True)
|
||||
return db
|
||||
|
||||
|
||||
def retrieve(self, query, vector_db, k=5):
|
||||
'''
|
||||
基于query对向量库进行检索
|
||||
'''
|
||||
retriever = vector_db.as_retriever(search_kwargs={"k": k})
|
||||
docs = retriever.invoke(query)
|
||||
return docs, retriever
|
||||
|
||||
##FlashrankRerank效果一般
|
||||
# def rerank(self, query, retriever):
|
||||
# compressor = FlashrankRerank()
|
||||
# compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever)
|
||||
# compressed_docs = compression_retriever.get_relevant_documents(query)
|
||||
# return compressed_docs
|
||||
|
||||
model = load_rerank_model()
|
||||
rerank_results = model.rerank(query, passages)
|
||||
return rerank_results
|
||||
|
||||
@st.cache_resource
|
||||
def load_model():
|
||||
model = (
|
||||
AutoModelForCausalLM.from_pretrained("model", trust_remote_code=True)
|
||||
.to(torch.bfloat16)
|
||||
.cuda()
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("model", trust_remote_code=True)
|
||||
return model, tokenizer
|
||||
|
||||
def rerank(self, query, docs):
|
||||
reranker = self.load_rerank_model()
|
||||
passages = []
|
||||
for doc in docs:
|
||||
passages.append(str(doc.page_content))
|
||||
scores = reranker.compute_score([[query, passage] for passage in passages])
|
||||
sorted_pairs = sorted(zip(passages, scores), key=lambda x: x[1], reverse=True)
|
||||
sorted_passages, sorted_scores = zip(*sorted_pairs)
|
||||
return sorted_passages, sorted_scores
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger.info(data_dir)
|
||||
if not os.path.exists(data_dir):
|
||||
os.mkdir(data_dir)
|
||||
faiss_index, knowledge_chunks = load_index_and_knowledge()
|
||||
os.mkdir(data_dir)
|
||||
dp = Data_process()
|
||||
# faiss_index, knowledge_chunks = dp.load_index_and_knowledge(knowledge_pkl_path='')
|
||||
vector_db = dp.load_vector_db()
|
||||
# 按照query进行查询
|
||||
# query = "她要阻挠姐姐的婚姻,即使她自己的尸体在房门跟前"
|
||||
# query = "肯定的。我最近睡眠很差,总是做噩梦。而且我吃得也不好,体重一直在下降"
|
||||
# query = "序言 (一) 变态心理学是心理学本科生的必修课程之一,教材更新的问题一直在困扰着我们。"
|
||||
query = "心理咨询师,我觉得我的胸闷症状越来越严重了,这让我很害怕"
|
||||
distances, indices = find_top_k(query, faiss_index, 5)
|
||||
logger.info(f'distances==={distances}')
|
||||
logger.info(f'indices==={indices}')
|
||||
|
||||
|
||||
# rerank无法返回id,先实现按整个问答对排序
|
||||
rerank_results = rerank(query, indices, knowledge_chunks)
|
||||
for passage, score in zip(rerank_results['rerank_passages'], rerank_results['rerank_scores']):
|
||||
print(str(score)+'\n')
|
||||
print(passage+'\n')
|
||||
|
||||
# query = "儿童心理学说明-内容提要-目录 《儿童心理学》1993年修订版说明 《儿童心理学》是1961年初全国高等学校文科教材会议指定朱智贤教授编 写的。1962年初版,1979年再版。"
|
||||
# query = "我现在处于高三阶段,感到非常迷茫和害怕。我觉得自己从出生以来就是多余的,没有必要存在于这个世界。无论是在家庭、学校、朋友还是老师面前,我都感到被否定。我非常难过,对高考充满期望但成绩却不理想,我现在感到非常孤独、累和迷茫。您能给我提供一些建议吗?"
|
||||
# query = "这在一定程度上限制了其思维能力,特别是辩证 逻辑思维能力的发展。随着年龄的增长,初中三年级学生逐步克服了依赖性"
|
||||
query = "我现在处于高三阶段,感到非常迷茫和害怕。我觉得自己从出生以来就是多余的,没有必要存在于这个世界。无论是在家庭、学校、朋友还是老师面前,我都感到被否定。我非常难过,对高考充满期望但成绩却不理想"
|
||||
docs, retriever = dp.retrieve(query, vector_db, k=10)
|
||||
logger.info(f'Query: {query}')
|
||||
logger.info("Retrieve results:")
|
||||
for i, doc in enumerate(docs):
|
||||
logger.info(str(i) + '\n')
|
||||
logger.info(doc)
|
||||
# print(f'get num of docs:{len(docs)}')
|
||||
# print(docs)
|
||||
passages,scores = dp.rerank(query, docs)
|
||||
logger.info("After reranking...")
|
||||
for i in range(len(scores)):
|
||||
logger.info(str(scores[i]) + '\n')
|
||||
logger.info(passages[i])
|
@ -13,9 +13,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
import torch
|
||||
import streamlit as st
|
||||
from openxlab.model import download
|
||||
from data_processing import load_index_and_knowledge, create_index_cpu, create_index_gpu, find_top_k, rerank
|
||||
from config.config import embedding_path, doc_dir, qa_dir, knowledge_pkl_path, data_dir
|
||||
|
||||
from data_processing import Data_process
|
||||
'''
|
||||
1)构建完整的 RAG pipeline。输入为用户 query,输出为 answer
|
||||
2)调用 embedding 提供的接口对 query 向量化
|
||||
@ -42,30 +41,23 @@ def load_model():
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
||||
return model, tokenizer
|
||||
|
||||
def get_prompt():
|
||||
pass
|
||||
|
||||
def get_prompt_template():
|
||||
pass
|
||||
|
||||
def main(query, system_prompt):
|
||||
model, tokenizer = load_model()
|
||||
model = model.eval()
|
||||
def main(query, system_prompt=''):
|
||||
logger.info(data_dir)
|
||||
if not os.path.exists(data_dir):
|
||||
os.mkdir(data_dir)
|
||||
# 下载基于 FAISS 预构建的 vector DB 以及原始知识库
|
||||
faiss_index, knowledge_chunks = load_index_and_knowledge()
|
||||
distances, indices = find_top_k(query, faiss_index, 5)
|
||||
rerank_results = rerank(query, indices, knowledge_chunks)
|
||||
messages = [(system_prompt, rerank_results['rerank_passages'][0])]
|
||||
logger.info(f'messages:{messages}')
|
||||
response, history = model.chat(tokenizer, query, history=messages)
|
||||
messages.append((query, response))
|
||||
print(f"robot >>> {response}")
|
||||
|
||||
if __name__ == '__main__':
|
||||
# query = '你好'
|
||||
query = "心理咨询师,我觉得我的胸闷症状越来越严重了,这让我很害怕"
|
||||
#TODO system_prompt = get_prompt()
|
||||
system_prompt = "你是一个由aJupyter、Farewell、jujimeizuo、Smiling&Weeping研发(排名按字母顺序排序,不分先后)、散步提供技术支持、上海人工智能实验室提供支持开发的心理健康大模型。现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。"
|
||||
main(query, system_prompt)
|
||||
os.mkdir(data_dir)
|
||||
dp = Data_process()
|
||||
vector_db = dp.load_vector_db()
|
||||
docs, retriever = dp.retrieve(query, vector_db, k=10)
|
||||
logger.info(f'Query: {query}')
|
||||
logger.info("Retrieve results===============================")
|
||||
for i, doc in enumerate(docs):
|
||||
logger.info(doc)
|
||||
passages,scores = dp.rerank(query, docs)
|
||||
logger.info("After reranking===============================")
|
||||
for i in range(len(scores)):
|
||||
logger.info(passages[i])
|
||||
logger.info(f'score: {str(scores[i])}')
|
||||
|
||||
if __name__ == "__main__":
|
||||
query = "我现在处于高三阶段,感到非常迷茫和害怕。我觉得自己从出生以来就是多余的,没有必要存在于这个世界。无论是在家庭、学校、朋友还是老师面前,我都感到被否定。我非常难过,对高考充满期望但成绩却不理想"
|
||||
main(query)
|
Loading…
Reference in New Issue
Block a user