feat: add internlm2-chat-7b-config

This commit is contained in:
aJupyter 2024-03-03 21:08:52 +08:00
parent e1158ce6b0
commit 4d8ae7d428
6 changed files with 265673 additions and 5 deletions

View File

@ -39,6 +39,7 @@
| 模型 | 类型 |
| :-------------------: | :------: |
| InternLM2_7B_chat | qlora |
| InternLM2_7B_chat | 全量微调 |
| InternLM2_1_8B_chat | 全量微调 |
| Qwen_7b_chat | qlora |
| Qwen1_5-0_5B-Chat | 全量微调 |
@ -63,11 +64,15 @@
- 评估和诊断工具:为了有效促进心理健康,需要有科学的工具来评估个体的心理状态,以及诊断可能存在的心理问题。
### 最近更新
- 【2024.3.3】 [基于InternLM2-7B-chat全量微调版本开源](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full)需要两块100*80G更新专业评估详见[evaluate](./evaluate/)更新基于PaddleOCR的PDF转txt工具脚本详见[scripts](./scripts/)
- 【2024.2.29】更新客观评估计算,详见[evaluate](./evaluate/),更新一系列数据集,详见[datasets](./datasets/)。
- 【2024.2.27】更新英文readme和一系列数据集舔狗和单轮对话
- 【2024.2.23】推出基于InternLM2_7B_chat_qlora的 `温柔御姐心理医生艾薇`[点击获取模型权重](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_aiwei)[配置文件](xtuner_config/aiwei-internlm2_chat_7b_qlora.py)[在线体验链接](https://openxlab.org.cn/apps/detail/ajupyter/EmoLLM-aiwei)
- 【2024.2.23】更新[若干微调配置](/xtuner_config/),新增 [data_pro.json](/datasets/data_pro.json)(数量更多、场景更全、更丰富)和 [aiwei.json](/datasets/aiwei.json)温柔御姐角色扮演专用带有Emoji表情即将推出 `温柔御姐心理医生艾薇`
- 【2024.2.18】 [基于Qwen1_5-0_5B-Chat全量微调版本开源](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary),算力有限的道友可以玩起来~
<summary>查看更多</summary>
- 【2024.2.6】 EmoLLM在[**Openxlab** ](https://openxlab.org.cn/models/detail/jujimeizuo/EmoLLM_Model) 平台下载量高达18.7k,欢迎大家体验!
<p align="center">
@ -75,7 +80,6 @@
</p>
<details>
<summary>查看更多</summary>
- 【2024.2.5】 项目荣获公众号**NLP工程化**推文宣传[推文链接](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A),为博主推广一波,欢迎大家关注!!🥳🥳
@ -247,8 +251,10 @@ git clone https://github.com/SmartFlowAI/EmoLLM.git
## 交流群
- 如果失效请移步Issue区
<p align="center">
<img width="30%" src="https://github.com/SmartFlowAI/EmoLLM/assets/62385492/55ecd0aa-4832-4269-ad57-4c26f9aa286b" alt="EmoLLM官方交流群">
</p>
- 如果失效请移步Issue区

View File

@ -40,6 +40,7 @@
| model | type |
| :-------------------: | :------: |
| InternLM2_7B_chat | qlora |
| InternLM2_7B_chat | full finetuning |
| InternLM2_1_8B_chat | full finetuning |
| Qwen_7b_chat | qlora |
| Qwen1_5-0_5B-Chat | full finetuning |
@ -62,6 +63,7 @@ The Model is aimed at fully understanding and promoting the mental health of ind
- Prevention and intervention measures: The Mental Health Grand Model also includes strategies for preventing psychological issues and promoting mental health, such as psychological education, counseling, therapy, and social support systems.
- Assessment and diagnostic tools: Effective promotion of mental health requires scientific tools to assess individuals' psychological states and diagnose potential psychological issues.
### Recent Updates
- 【2024.3.3】 [Based on InternLM2-7B-chat full amount of fine-tuned version of open source](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full), need two 100*80G, update professional evaluation, see [evaluate](./evaluate/), update PaddleOCR-based PDF to txt tool scripts, see [scripts](./scripts/).
- 【2024.2.29】 Updated objective assessment calculations, see [evaluate](./evaluate/) for details. A series of datasets have also been updated, see [datasets](./datasets/) for details.
- 【2024.2.27】 Updated English README and a series of datasets (licking dogs and one-round dialogue)
- 【2024.2.23】The "Gentle Lady Psychologist Ai Wei" based on InternLM2_7B_chat_qlora was launched. [Click here to obtain the model weights](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_aiwei), [configuration file](xtuner_config/aiwei-internlm2_chat_7b_qlora.py), [online experience link](https://openxlab.org.cn/apps/detail/ajupyter/EmoLLM-aiwei)
@ -70,15 +72,16 @@ The Model is aimed at fully understanding and promoting the mental health of ind
- 【2024.2.18】 The full fine-tuned version based on Qwen1_5-0_5B-Chat has been [open-sourced](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary). Friends with limited computational resources can now dive in and explore it.
<details>
<summary>View More</summary>
- 【2024.2.6】 [Open-sourced based on the Qwen1_5-0_5B-Chat full-scale fine-tuned version](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary), friends with limited computing power can start experimenting~
<p align="center">
<img src="https://github.com/aJupyter/EmoLLM/assets/62385492/7e931682-c54d-4ded-bc67-79130c68d744" alt="模型下载量">
</p>
<details>
<summary>View More</summary>
- 【2024.2.5】 The project has been promoted by the official WeChat account NLP Engineering. Here's the [link](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A) to the article. Welcome everyone to follow!! 🥳🥳
<p align="center">
@ -249,3 +252,10 @@ The project is licensed under the MIT License. Please refer to the details
[issues-url]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg
[license-shield]: https://img.shields.io/github/license/SmartflowAI/EmoLLM.svg?style=flat-square
[license-url]: https://github.com/SmartflowAI/EmoLLM/blob/main/LICENSE
## Communication group
- If it fails, go to the Issue section.
<p align="center">
<img width="30%" src="https://github.com/SmartFlowAI/EmoLLM/assets/62385492/55ecd0aa-4832-4269-ad57-4c26f9aa286b" alt="EmoLLM official communication group">
</p>

151974
datasets/processed/output.json Normal file

File diff suppressed because it is too large Load Diff

113444
datasets/processed/output2.json Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,12 @@
import json
# 打开JSON文件并读取其内容
with open('/root/Emollm/datasets/multi_turn_dataset_2.json', 'rt', encoding='utf-8') as file:
data = json.load(file)
n = 0
for i in data:
i['conversation'][0]['system'] = "你是心理健康助手EmoLLM由EmoLLM团队打造。你旨在通过专业心理咨询协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术一步步帮助来访者解决心理问题。"
with open('output2.json', 'wt', encoding='utf-8') as file:
json.dump(data, file, ensure_ascii=False, indent=4)

View File

@ -0,0 +1,222 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig)
from xtuner.dataset import ConcatDataset, process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
from mmengine.visualization import Visualizer,WandbVisBackend, TensorboardVisBackend
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b'
# /root/share/model_repos/internlm2-chat-7b
use_varlen_attn = False
# Data
data_path1 = './datasets/output.json'
data_path2 = './datasets/output2.json'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 4096
pack_to_max_length = False
# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 4
dataloader_num_workers = 1
max_epochs = 5
optim_type = AdamW
lr = 1e-6
betas = (0.9, 0.999)
weight_decay = 0.0001
max_norm = 1 # grad clip
warmup_ratio = 0.03
# Save
save_steps = 100
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
# Evaluate the generation performance during the training
evaluation_freq = 100
SYSTEM = "你是心理健康助手EmoLLM由EmoLLM团队打造。你旨在通过专业心理咨询协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术一步步帮助来访者解决心理问题。"
evaluation_inputs = [
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。'
]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')
model = dict(
type=SupervisedFinetune,
use_varlen_attn=use_varlen_attn,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
))
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
data1 = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path1)),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length,
use_varlen_attn=use_varlen_attn)
data2 = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path2)),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length,
use_varlen_attn=use_varlen_attn)
train_dataset = dict(
type=ConcatDataset, datasets=[data1, data2])
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=train_dataset,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper, # AmpOptimWrapper
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='bfloat16')
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True)
]
# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
]
if use_varlen_attn:
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = dict(
type=Visualizer,
vis_backends=[dict(type=WandbVisBackend)]
)
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = '/root/Emollm/work_dirs/internlm2_chat_7b_full/iter_7000.pth'
# whether to resume training from the loaded checkpoint
resume = True
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)
# set log processor
log_processor = dict(by_epoch=False)