feat: add internlm2-chat-7b-config
This commit is contained in:
parent
e1158ce6b0
commit
4d8ae7d428
10
README.md
10
README.md
@ -39,6 +39,7 @@
|
||||
| 模型 | 类型 |
|
||||
| :-------------------: | :------: |
|
||||
| InternLM2_7B_chat | qlora |
|
||||
| InternLM2_7B_chat | 全量微调 |
|
||||
| InternLM2_1_8B_chat | 全量微调 |
|
||||
| Qwen_7b_chat | qlora |
|
||||
| Qwen1_5-0_5B-Chat | 全量微调 |
|
||||
@ -63,11 +64,15 @@
|
||||
- 评估和诊断工具:为了有效促进心理健康,需要有科学的工具来评估个体的心理状态,以及诊断可能存在的心理问题。
|
||||
|
||||
### 最近更新
|
||||
- 【2024.3.3】 [基于InternLM2-7B-chat全量微调版本开源](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full),需要两块100*80G,更新专业评估,详见[evaluate](./evaluate/),更新基于PaddleOCR的PDF转txt工具脚本,详见[scripts](./scripts/)
|
||||
- 【2024.2.29】更新客观评估计算,详见[evaluate](./evaluate/),更新一系列数据集,详见[datasets](./datasets/)。
|
||||
- 【2024.2.27】更新英文readme和一系列数据集(舔狗和单轮对话)
|
||||
- 【2024.2.23】推出基于InternLM2_7B_chat_qlora的 `温柔御姐心理医生艾薇`,[点击获取模型权重](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_aiwei),[配置文件](xtuner_config/aiwei-internlm2_chat_7b_qlora.py),[在线体验链接](https://openxlab.org.cn/apps/detail/ajupyter/EmoLLM-aiwei)
|
||||
- 【2024.2.23】更新[若干微调配置](/xtuner_config/),新增 [data_pro.json](/datasets/data_pro.json)(数量更多、场景更全、更丰富)和 [aiwei.json](/datasets/aiwei.json)(温柔御姐角色扮演专用,带有Emoji表情),即将推出 `温柔御姐心理医生艾薇`
|
||||
- 【2024.2.18】 [基于Qwen1_5-0_5B-Chat全量微调版本开源](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary),算力有限的道友可以玩起来~
|
||||
|
||||
<summary>查看更多</summary>
|
||||
|
||||
- 【2024.2.6】 EmoLLM在[**Openxlab** ](https://openxlab.org.cn/models/detail/jujimeizuo/EmoLLM_Model) 平台下载量高达18.7k,欢迎大家体验!
|
||||
|
||||
<p align="center">
|
||||
@ -75,7 +80,6 @@
|
||||
</p>
|
||||
|
||||
<details>
|
||||
<summary>查看更多</summary>
|
||||
|
||||
- 【2024.2.5】 项目荣获公众号**NLP工程化**推文宣传[推文链接](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A),为博主推广一波,欢迎大家关注!!🥳🥳
|
||||
|
||||
@ -247,8 +251,10 @@ git clone https://github.com/SmartFlowAI/EmoLLM.git
|
||||
|
||||
|
||||
## 交流群
|
||||
- 如果失效,请移步Issue区
|
||||
|
||||
<p align="center">
|
||||
<img width="30%" src="https://github.com/SmartFlowAI/EmoLLM/assets/62385492/55ecd0aa-4832-4269-ad57-4c26f9aa286b" alt="EmoLLM官方交流群">
|
||||
</p>
|
||||
|
||||
- 如果失效,请移步Issue区
|
||||
|
||||
|
16
README_EN.md
16
README_EN.md
@ -40,6 +40,7 @@
|
||||
| model | type |
|
||||
| :-------------------: | :------: |
|
||||
| InternLM2_7B_chat | qlora |
|
||||
| InternLM2_7B_chat | full finetuning |
|
||||
| InternLM2_1_8B_chat | full finetuning |
|
||||
| Qwen_7b_chat | qlora |
|
||||
| Qwen1_5-0_5B-Chat | full finetuning |
|
||||
@ -62,6 +63,7 @@ The Model is aimed at fully understanding and promoting the mental health of ind
|
||||
- Prevention and intervention measures: The Mental Health Grand Model also includes strategies for preventing psychological issues and promoting mental health, such as psychological education, counseling, therapy, and social support systems.
|
||||
- Assessment and diagnostic tools: Effective promotion of mental health requires scientific tools to assess individuals' psychological states and diagnose potential psychological issues.
|
||||
### Recent Updates
|
||||
- 【2024.3.3】 [Based on InternLM2-7B-chat full amount of fine-tuned version of open source](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full), need two 100*80G, update professional evaluation, see [evaluate](./evaluate/), update PaddleOCR-based PDF to txt tool scripts, see [scripts](./scripts/).
|
||||
- 【2024.2.29】 Updated objective assessment calculations, see [evaluate](./evaluate/) for details. A series of datasets have also been updated, see [datasets](./datasets/) for details.
|
||||
- 【2024.2.27】 Updated English README and a series of datasets (licking dogs and one-round dialogue)
|
||||
- 【2024.2.23】The "Gentle Lady Psychologist Ai Wei" based on InternLM2_7B_chat_qlora was launched. [Click here to obtain the model weights](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_aiwei), [configuration file](xtuner_config/aiwei-internlm2_chat_7b_qlora.py), [online experience link](https://openxlab.org.cn/apps/detail/ajupyter/EmoLLM-aiwei)
|
||||
@ -70,15 +72,16 @@ The Model is aimed at fully understanding and promoting the mental health of ind
|
||||
|
||||
- 【2024.2.18】 The full fine-tuned version based on Qwen1_5-0_5B-Chat has been [open-sourced](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary). Friends with limited computational resources can now dive in and explore it.
|
||||
|
||||
|
||||
<details>
|
||||
<summary>View More</summary>
|
||||
|
||||
- 【2024.2.6】 [Open-sourced based on the Qwen1_5-0_5B-Chat full-scale fine-tuned version](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary), friends with limited computing power can start experimenting~
|
||||
|
||||
<p align="center">
|
||||
<img src="https://github.com/aJupyter/EmoLLM/assets/62385492/7e931682-c54d-4ded-bc67-79130c68d744" alt="模型下载量">
|
||||
</p>
|
||||
|
||||
<details>
|
||||
<summary>View More</summary>
|
||||
|
||||
- 【2024.2.5】 The project has been promoted by the official WeChat account NLP Engineering. Here's the [link](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A) to the article. Welcome everyone to follow!! 🥳🥳
|
||||
|
||||
<p align="center">
|
||||
@ -249,3 +252,10 @@ The project is licensed under the MIT License. Please refer to the details
|
||||
[issues-url]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg
|
||||
[license-shield]: https://img.shields.io/github/license/SmartflowAI/EmoLLM.svg?style=flat-square
|
||||
[license-url]: https://github.com/SmartflowAI/EmoLLM/blob/main/LICENSE
|
||||
|
||||
## Communication group
|
||||
- If it fails, go to the Issue section.
|
||||
|
||||
<p align="center">
|
||||
<img width="30%" src="https://github.com/SmartFlowAI/EmoLLM/assets/62385492/55ecd0aa-4832-4269-ad57-4c26f9aa286b" alt="EmoLLM official communication group">
|
||||
</p>
|
||||
|
151974
datasets/processed/output.json
Normal file
151974
datasets/processed/output.json
Normal file
File diff suppressed because it is too large
Load Diff
113444
datasets/processed/output2.json
Normal file
113444
datasets/processed/output2.json
Normal file
File diff suppressed because it is too large
Load Diff
12
datasets/processed/process.py
Normal file
12
datasets/processed/process.py
Normal file
@ -0,0 +1,12 @@
|
||||
import json
|
||||
|
||||
# 打开JSON文件并读取其内容
|
||||
with open('/root/Emollm/datasets/multi_turn_dataset_2.json', 'rt', encoding='utf-8') as file:
|
||||
data = json.load(file)
|
||||
|
||||
n = 0
|
||||
for i in data:
|
||||
i['conversation'][0]['system'] = "你是心理健康助手EmoLLM,由EmoLLM团队打造。你旨在通过专业心理咨询,协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术,一步步帮助来访者解决心理问题。"
|
||||
|
||||
with open('output2.json', 'wt', encoding='utf-8') as file:
|
||||
json.dump(data, file, ensure_ascii=False, indent=4)
|
222
xtuner_config/internlm2_chat_7b_full.py
Normal file
222
xtuner_config/internlm2_chat_7b_full.py
Normal file
@ -0,0 +1,222 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from mmengine.dataset import DefaultSampler
|
||||
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
||||
LoggerHook, ParamSchedulerHook)
|
||||
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
||||
from peft import LoraConfig
|
||||
from torch.optim import AdamW
|
||||
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||
BitsAndBytesConfig)
|
||||
|
||||
from xtuner.dataset import ConcatDataset, process_hf_dataset
|
||||
from xtuner.dataset.collate_fns import default_collate_fn
|
||||
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
||||
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
||||
VarlenAttnArgsToMessageHubHook)
|
||||
from xtuner.engine.runner import TrainLoop
|
||||
from xtuner.model import SupervisedFinetune
|
||||
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
||||
|
||||
from mmengine.visualization import Visualizer,WandbVisBackend, TensorboardVisBackend
|
||||
|
||||
#######################################################################
|
||||
# PART 1 Settings #
|
||||
#######################################################################
|
||||
# Model
|
||||
pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b'
|
||||
# /root/share/model_repos/internlm2-chat-7b
|
||||
use_varlen_attn = False
|
||||
|
||||
# Data
|
||||
data_path1 = './datasets/output.json'
|
||||
data_path2 = './datasets/output2.json'
|
||||
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
||||
max_length = 4096
|
||||
pack_to_max_length = False
|
||||
|
||||
# Scheduler & Optimizer
|
||||
batch_size = 1 # per_device
|
||||
accumulative_counts = 4
|
||||
dataloader_num_workers = 1
|
||||
max_epochs = 5
|
||||
optim_type = AdamW
|
||||
lr = 1e-6
|
||||
betas = (0.9, 0.999)
|
||||
weight_decay = 0.0001
|
||||
max_norm = 1 # grad clip
|
||||
warmup_ratio = 0.03
|
||||
|
||||
# Save
|
||||
save_steps = 100
|
||||
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
||||
|
||||
# Evaluate the generation performance during the training
|
||||
evaluation_freq = 100
|
||||
SYSTEM = "你是心理健康助手EmoLLM,由EmoLLM团队打造。你旨在通过专业心理咨询,协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术,一步步帮助来访者解决心理问题。"
|
||||
evaluation_inputs = [
|
||||
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。'
|
||||
]
|
||||
|
||||
#######################################################################
|
||||
# PART 2 Model & Tokenizer #
|
||||
#######################################################################
|
||||
tokenizer = dict(
|
||||
type=AutoTokenizer.from_pretrained,
|
||||
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||
trust_remote_code=True,
|
||||
padding_side='right')
|
||||
|
||||
model = dict(
|
||||
type=SupervisedFinetune,
|
||||
use_varlen_attn=use_varlen_attn,
|
||||
llm=dict(
|
||||
type=AutoModelForCausalLM.from_pretrained,
|
||||
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.bfloat16,
|
||||
))
|
||||
|
||||
|
||||
#######################################################################
|
||||
# PART 3 Dataset & Dataloader #
|
||||
#######################################################################
|
||||
data1 = dict(
|
||||
type=process_hf_dataset,
|
||||
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path1)),
|
||||
tokenizer=tokenizer,
|
||||
max_length=max_length,
|
||||
dataset_map_fn=None,
|
||||
template_map_fn=dict(
|
||||
type=template_map_fn_factory, template=prompt_template),
|
||||
remove_unused_columns=True,
|
||||
shuffle_before_pack=True,
|
||||
pack_to_max_length=pack_to_max_length,
|
||||
use_varlen_attn=use_varlen_attn)
|
||||
|
||||
data2 = dict(
|
||||
type=process_hf_dataset,
|
||||
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path2)),
|
||||
tokenizer=tokenizer,
|
||||
max_length=max_length,
|
||||
dataset_map_fn=None,
|
||||
template_map_fn=dict(
|
||||
type=template_map_fn_factory, template=prompt_template),
|
||||
remove_unused_columns=True,
|
||||
shuffle_before_pack=True,
|
||||
pack_to_max_length=pack_to_max_length,
|
||||
use_varlen_attn=use_varlen_attn)
|
||||
|
||||
|
||||
train_dataset = dict(
|
||||
type=ConcatDataset, datasets=[data1, data2])
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=batch_size,
|
||||
num_workers=dataloader_num_workers,
|
||||
dataset=train_dataset,
|
||||
sampler=dict(type=DefaultSampler, shuffle=True),
|
||||
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
||||
|
||||
#######################################################################
|
||||
# PART 4 Scheduler & Optimizer #
|
||||
#######################################################################
|
||||
# optimizer
|
||||
optim_wrapper = dict(
|
||||
type=AmpOptimWrapper, # AmpOptimWrapper
|
||||
optimizer=dict(
|
||||
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
||||
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
||||
accumulative_counts=accumulative_counts,
|
||||
loss_scale='dynamic',
|
||||
dtype='bfloat16')
|
||||
|
||||
# learning policy
|
||||
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type=LinearLR,
|
||||
start_factor=1e-5,
|
||||
by_epoch=True,
|
||||
begin=0,
|
||||
end=warmup_ratio * max_epochs,
|
||||
convert_to_iter_based=True),
|
||||
dict(
|
||||
type=CosineAnnealingLR,
|
||||
eta_min=0.0,
|
||||
by_epoch=True,
|
||||
begin=warmup_ratio * max_epochs,
|
||||
end=max_epochs,
|
||||
convert_to_iter_based=True)
|
||||
]
|
||||
|
||||
# train, val, test setting
|
||||
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
||||
|
||||
#######################################################################
|
||||
# PART 5 Runtime #
|
||||
#######################################################################
|
||||
# Log the dialogue periodically during the training process, optional
|
||||
custom_hooks = [
|
||||
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
||||
dict(
|
||||
type=EvaluateChatHook,
|
||||
tokenizer=tokenizer,
|
||||
every_n_iters=evaluation_freq,
|
||||
evaluation_inputs=evaluation_inputs,
|
||||
system=SYSTEM,
|
||||
prompt_template=prompt_template)
|
||||
]
|
||||
|
||||
if use_varlen_attn:
|
||||
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
||||
|
||||
# configure default hooks
|
||||
default_hooks = dict(
|
||||
# record the time of every iteration.
|
||||
timer=dict(type=IterTimerHook),
|
||||
# print log every 10 iterations.
|
||||
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
||||
# enable the parameter scheduler.
|
||||
param_scheduler=dict(type=ParamSchedulerHook),
|
||||
# save checkpoint per `save_steps`.
|
||||
checkpoint=dict(
|
||||
type=CheckpointHook,
|
||||
by_epoch=False,
|
||||
interval=save_steps,
|
||||
max_keep_ckpts=save_total_limit),
|
||||
# set sampler seed in distributed evrionment.
|
||||
sampler_seed=dict(type=DistSamplerSeedHook),
|
||||
)
|
||||
|
||||
# configure environment
|
||||
env_cfg = dict(
|
||||
# whether to enable cudnn benchmark
|
||||
cudnn_benchmark=False,
|
||||
# set multi process parameters
|
||||
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
||||
# set distributed parameters
|
||||
dist_cfg=dict(backend='nccl'),
|
||||
)
|
||||
|
||||
# set visualizer
|
||||
visualizer = dict(
|
||||
type=Visualizer,
|
||||
vis_backends=[dict(type=WandbVisBackend)]
|
||||
)
|
||||
|
||||
# set log level
|
||||
log_level = 'INFO'
|
||||
|
||||
# load from which checkpoint
|
||||
load_from = '/root/Emollm/work_dirs/internlm2_chat_7b_full/iter_7000.pth'
|
||||
|
||||
# whether to resume training from the loaded checkpoint
|
||||
resume = True
|
||||
|
||||
# Defaults to use random seed and disable `deterministic`
|
||||
randomness = dict(seed=None, deterministic=False)
|
||||
|
||||
# set log processor
|
||||
log_processor = dict(by_epoch=False)
|
Loading…
Reference in New Issue
Block a user