feat: finetune Qwen and demo

This commit is contained in:
jujimeizuo 2024-01-21 19:11:51 +08:00
parent dc9208f4d5
commit 45b143b6ef
14 changed files with 606 additions and 16 deletions

View File

@ -1,14 +0,0 @@
on:
push:
branches:
- main
name: Generate a list of contributors
jobs:
contrib-readme-en-job:
runs-on: ubuntu-latest
name: A job to automate contrib in readme
steps:
- name: Contribute List
uses: akhilmhdh/contributors-readme-action@v2.3.4
env:
GITHUB_TOKEN: ${{ secrets.CONTRIBUTORS_TOKEN }}

2
.gitignore vendored
View File

@ -2,4 +2,4 @@ ESConv.json
.DS_Store .DS_Store
__pycache__/ __pycache__/
tmp/ tmp/
data/zhipuai/ zhipuai/

View File

@ -3,6 +3,6 @@
## 🌟 Contributors ## 🌟 Contributors
[![EmoLLM contributors](https://contrib.rocks/image?repo=aJupyter/EmoLLM&max=2000)](https://github.com/aJupyter/EmoLLM/graphs/contributors) [![EmoLLM contributors](https://contrib.rocks/image?repo=aJupyter/EmoLLM&max=200)](https://github.com/aJupyter/EmoLLM/graphs/contributors)

210
demo/cli_qwen.py Normal file
View File

@ -0,0 +1,210 @@
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""A simple command-line interactive chat demo."""
import argparse
import os
import platform
import shutil
from copy import deepcopy
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from transformers.trainer_utils import set_seed
DEFAULT_CKPT_PATH = './merged'
_WELCOME_MSG = '''\
Welcome to use Emo-Chat model, type text to start chat, type :h to show command help.
(欢迎使用 Emo-Chat 模型输入内容即可进行对话:h 显示命令帮助)
Note: This demo is governed by the original license of Qwen.
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, including hate speech, violence, pornography, deception, etc.
(本演示受EmoLLM的许可协议限制我们强烈建议用户不应传播及不应允许他人传播以下内容包括但不限于仇恨言论暴力色情欺诈相关的有害信息)
'''
_HELP_MSG = '''\
Commands:
:help / :h Show this help message 显示帮助信息
:exit / :quit / :q Exit the demo 退出Demo
:clear / :cl Clear screen 清屏
:clear-his / :clh Clear history 清除对话历史
:history / :his Show history 显示对话历史
:seed Show current random seed 显示当前随机种子
:seed <N> Set random seed to <N> 设置随机种子
:conf Show current generation config 显示生成配置
:conf <key>=<value> Change generation config 修改生成配置
:reset-conf Reset generation config 重置生成配置
'''
def _load_model_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path, trust_remote_code=True, resume_download=True,
)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path,
device_map=device_map,
trust_remote_code=True,
resume_download=True,
).eval()
config = GenerationConfig.from_pretrained(
args.checkpoint_path, trust_remote_code=True, resume_download=True,
)
return model, tokenizer, config
def _gc():
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _clear_screen():
if platform.system() == "Windows":
os.system("cls")
else:
os.system("clear")
def _print_history(history):
terminal_width = shutil.get_terminal_size()[0]
print(f'History ({len(history)})'.center(terminal_width, '='))
for index, (query, response) in enumerate(history):
print(f'User[{index}]: {query}')
print(f'QWen[{index}]: {response}')
print('=' * terminal_width)
def _get_input() -> str:
while True:
try:
message = input('User> ').strip()
except UnicodeDecodeError:
print('[ERROR] Encoding error in input')
continue
except KeyboardInterrupt:
exit(1)
if message:
return message
print('[ERROR] Query is empty')
def main():
parser = argparse.ArgumentParser(
description='QWen-Chat command-line interactive chat demo.')
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
args = parser.parse_args()
history, response = [], ''
model, tokenizer, config = _load_model_tokenizer(args)
orig_gen_config = deepcopy(model.generation_config)
_clear_screen()
print(_WELCOME_MSG)
seed = args.seed
while True:
query = _get_input()
# Process commands.
if query.startswith(':'):
command_words = query[1:].strip().split()
if not command_words:
command = ''
else:
command = command_words[0]
if command in ['exit', 'quit', 'q']:
break
elif command in ['clear', 'cl']:
_clear_screen()
print(_WELCOME_MSG)
_gc()
continue
elif command in ['clear-history', 'clh']:
print(f'[INFO] All {len(history)} history cleared')
history.clear()
_gc()
continue
elif command in ['help', 'h']:
print(_HELP_MSG)
continue
elif command in ['history', 'his']:
_print_history(history)
continue
elif command in ['seed']:
if len(command_words) == 1:
print(f'[INFO] Current random seed: {seed}')
continue
else:
new_seed_s = command_words[1]
try:
new_seed = int(new_seed_s)
except ValueError:
print(f'[WARNING] Fail to change random seed: {new_seed_s!r} is not a valid number')
else:
print(f'[INFO] Random seed changed to {new_seed}')
seed = new_seed
continue
elif command in ['conf']:
if len(command_words) == 1:
print(model.generation_config)
else:
for key_value_pairs_str in command_words[1:]:
eq_idx = key_value_pairs_str.find('=')
if eq_idx == -1:
print('[WARNING] format: <key>=<value>')
continue
conf_key, conf_value_str = key_value_pairs_str[:eq_idx], key_value_pairs_str[eq_idx + 1:]
try:
conf_value = eval(conf_value_str)
except Exception as e:
print(e)
continue
else:
print(f'[INFO] Change config: model.generation_config.{conf_key} = {conf_value}')
setattr(model.generation_config, conf_key, conf_value)
continue
elif command in ['reset-conf']:
print('[INFO] Reset generation config')
model.generation_config = deepcopy(orig_gen_config)
print(model.generation_config)
continue
else:
# As normal query.
pass
# Run chat.
set_seed(seed)
try:
for response in model.chat_stream(tokenizer, query, history=history, generation_config=config):
_clear_screen()
print(f"\nUser: {query}")
print(f"\nQwen-Chat: {response}")
except KeyboardInterrupt:
print('[WARNING] Generation interrupted')
continue
history.append((query, response))
if __name__ == "__main__":
main()

View File

@ -0,0 +1,2 @@
gradio<3.42
mdtex2html

209
demo/web_qwen.py Normal file
View File

@ -0,0 +1,209 @@
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""A simple web interactive chat demo based on gradio."""
import os
from argparse import ArgumentParser
import gradio as gr
import mdtex2html
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
DEFAULT_CKPT_PATH = './merged'
def _get_args():
parser = ArgumentParser()
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
parser.add_argument("--share", action="store_true", default=False,
help="Create a publicly shareable link for the interface.")
parser.add_argument("--inbrowser", action="store_true", default=False,
help="Automatically launch the interface in a new tab on the default browser.")
parser.add_argument("--server-port", type=int, default=6006,
help="Demo server port.")
parser.add_argument("--server-name", type=str, default="127.0.0.1",
help="Demo server name.")
args = parser.parse_args()
return args
def _load_model_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path, trust_remote_code=True, resume_download=True,
)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path,
device_map=device_map,
trust_remote_code=True,
resume_download=True,
).eval()
config = GenerationConfig.from_pretrained(
args.checkpoint_path, trust_remote_code=True, resume_download=True,
)
return model, tokenizer, config
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert(message),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def _gc():
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _launch_demo(args, model, tokenizer, config):
def predict(_query, _chatbot, _task_history):
print(f"User: {_parse_text(_query)}")
_chatbot.append((_parse_text(_query), ""))
full_response = ""
for response in model.chat_stream(tokenizer, _query, history=_task_history, generation_config=config):
_chatbot[-1] = (_parse_text(_query), _parse_text(response))
yield _chatbot
full_response = _parse_text(response)
print(f"History: {_task_history}")
_task_history.append((_query, full_response))
print(f"Qwen-Chat: {_parse_text(full_response)}")
def regenerate(_chatbot, _task_history):
if not _task_history:
yield _chatbot
return
item = _task_history.pop(-1)
_chatbot.pop(-1)
yield from predict(item[0], _chatbot, _task_history)
def reset_user_input():
return gr.update(value="")
def reset_state(_chatbot, _task_history):
_task_history.clear()
_chatbot.clear()
_gc()
return _chatbot
with gr.Blocks() as demo:
gr.Markdown("""\
<p align="center"><img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo_qwen.jpg" style="height: 80px"/><p>""")
gr.Markdown("""<center><font size=8>Qwen-Chat Bot</center>""")
gr.Markdown(
"""\
<center><font size=3>This WebUI is based on Qwen-Chat, developed by Alibaba Cloud. \
(本WebUI基于Qwen-Chat打造实现聊天机器人功能)</center>""")
gr.Markdown("""\
<center><font size=4>
Qwen-7B <a href="https://modelscope.cn/models/qwen/Qwen-7B/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen-7B">🤗</a>&nbsp
Qwen-7B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen-7B-Chat">🤗</a>&nbsp
Qwen-14B <a href="https://modelscope.cn/models/qwen/Qwen-14B/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen-14B">🤗</a>&nbsp
Qwen-14B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-14B-Chat/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen-14B-Chat">🤗</a>&nbsp
&nbsp<a href="https://github.com/QwenLM/Qwen">Github</a></center>""")
chatbot = gr.Chatbot(label='Qwen-Chat', elem_classes="control-height")
query = gr.Textbox(lines=2, label='Input')
task_history = gr.State([])
with gr.Row():
empty_btn = gr.Button("🧹 Clear History (清除历史)")
submit_btn = gr.Button("🚀 Submit (发送)")
regen_btn = gr.Button("🤔️ Regenerate (重试)")
submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
submit_btn.click(reset_user_input, [], [query])
empty_btn.click(reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
gr.Markdown("""\
<font size=2>Note: This demo is governed by the original license of Qwen. \
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
including hate speech, violence, pornography, deception, etc. \
(本演示受Qwen的许可协议限制我们强烈建议用户不应传播及不应允许他人传播以下内容\
包括但不限于仇恨言论暴力色情欺诈相关的有害信息)""")
demo.queue().launch(
share=args.share,
inbrowser=args.inbrowser,
server_port=args.server_port,
server_name=args.server_name,
)
def main():
args = _get_args()
model, tokenizer, config = _load_model_tokenizer(args)
_launch_demo(args, model, tokenizer, config)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,183 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from bitsandbytes.optim import PagedAdamW32bit
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR
from peft import LoraConfig
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig)
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = 'Qwen/Qwen-7B-Chat'
# Data
data_path = './data/merge_fzt.json'
prompt_template = PROMPT_TEMPLATE.qwen_chat
max_length = 2048
pack_to_max_length = True
# Scheduler & Optimizer
batch_size = 8 # per_device
accumulative_counts = 2
dataloader_num_workers = 0
max_epochs = 3
optim_type = PagedAdamW32bit
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = "现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。"
evaluation_inputs = [
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。'
]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right',
eos_token='<|im_end|>')
model = dict(
type=SupervisedFinetune,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=dict(
type=BitsAndBytesConfig,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')),
lora=dict(
type=LoraConfig,
r=64,
lora_alpha=16,
lora_dropout=0.1,
bias='none',
task_type='CAUSAL_LM'))
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
train_dataset = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=train_dataset,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=default_collate_fn))
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
T_max=max_epochs,
convert_to_iter_based=True)
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
stop_word='<|im_end|>',
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 100 iterations.
logger=dict(type=LoggerHook, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per epoch.
checkpoint=dict(type=CheckpointHook, interval=1),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = None
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)