diff --git a/README.md b/README.md
index fcfde5f..8987e81 100644
--- a/README.md
+++ b/README.md
@@ -1,354 +1,355 @@
-
-
-# EmoLLM-心理健康大模型
-
-
-
-
-
-
-
-
-
-
-
-[![Contributors][contributors-shield]][contributors-url]
-[![Forks][forks-shield]][forks-url]
-[![Issues][issues-shield]][issues-url]
-[![OpenXLab_App][OpenXLab_App-image]][OpenXLab_App-url]
-[![OpenXLab_Model][OpenXLab_Model-image]][OpenXLab_Model-url]
-[![MIT License][license-shield]][license-url]
-[![Stargazers][stars-shield]][stars-url]
-
-
-
-EmoLLM
-
-
-
-
-
-**EmoLLM** 是一系列能够支持 **理解用户-支持用户-帮助用户** 心理健康辅导链路的心理健康大模型,由 `LLM`指令微调而来,欢迎大家star~⭐⭐。目前已经开源的 `LLM` 微调配置如下:
-
-
-
-| 模型 | 类型 | 链接 |
-| :-------------------: | :------: | :---: |
-| InternLM2_7B_chat | QLORA | |
-| InternLM2_7B_chat | 全量微调 | |
-| InternLM2_7B_base | QLORA | |
-| InternLM2_1_8B_chat | 全量微调 | |
-| InternLM2_20B_chat | LORA | |
-| Qwen_7b_chat | QLORA | |
-| Qwen1_5-0_5B-Chat | 全量微调 | |
-| Baichuan2_13B_chat | QLORA | |
-| ChatGLM3_6B | LORA | |
-| DeepSeek MoE_16B_chat | QLORA | |
-| Mixtral 8x7B_instruct | QLORA | |
-| …… | …… | …… |
-
-
-
-欢迎大家为本项目做出贡献~
-
----
-
-心理健康大模型(Mental Health Grand Model)是一个综合性的概念,它旨在全面理解和促进个体、群体乃至整个社会的心理健康状态。这个模型通常包含以下几个关键组成部分:
-
-- 认知因素:涉及个体的思维模式、信念系统、认知偏差以及解决问题的能力。认知因素对心理健康有重要影响,因为它们影响个体如何解释和应对生活中的事件。
-- 情感因素:包括情绪调节、情感表达和情感体验。情感健康是心理健康的重要组成部分,涉及个体如何管理和表达自己的情感,以及如何从负面情绪中恢复。
-- 行为因素:涉及个体的行为模式、习惯和应对策略。这包括应对压力的技巧、社交技能以及自我效能感,即个体对自己能力的信心。
-- 社会环境:包括家庭、工作、社区和文化背景等外部因素,这些因素对个体的心理健康有着直接和间接的影响。
-- 生理健康:身体健康与心理健康紧密相关。良好的身体健康可以促进心理健康,反之亦然。
-- 心理韧性:指个体在面对逆境时的恢复力和适应能力。心理韧性强的人更能够从挑战中恢复,并从中学习和成长。
-- 预防和干预措施:心理健康大模型还包括预防心理问题和促进心理健康的策略,如心理教育、心理咨询、心理治疗和社会支持系统。
-- 评估和诊断工具:为了有效促进心理健康,需要有科学的工具来评估个体的心理状态,以及诊断可能存在的心理问题。
-
-
-
-
-### 🎇最近更新
-- 【2024.4.2】在 Huggingface 上传[老母亲心理咨询师](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
-- 【2024.3.25】在百度飞桨平台发布[爹系男友心理咨询师](https://aistudio.baidu.com/community/app/68787)
-- 【2024.3.24】在OpenXLab和ModelScope平台发布InternLM2-Base-7B QLoRA微调模型, 具体请查看[InternLM2-Base-7B QLoRA](./xtuner_config/README_internlm2_7b_base_qlora.md)
-- 【2024.3.12】在百度飞桨平台发布[艾薇](https://aistudio.baidu.com/community/app/63335)
-- 【2024.3.11】 **EmoLLM V2.0 相比 EmoLLM V1.0 全面提升,已超越 Role-playing ChatGPT 在心理咨询任务上的能力!**[点击体验EmoLLM V2.0](https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0),更新[数据集统计及详细信息](./datasets/)、[路线图](./assets/Roadmap_ZH.png)
-- 【2024.3.9】 新增并发功能加速 [QA 对生成](./scripts/qa_generation/)、[RAG pipeline](./rag/)
-- 【2024.3.3】 [基于InternLM2-7B-chat全量微调版本EmoLLM V2.0开源](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full),需要两块A100*80G,更新专业评估,详见[evaluate](./evaluate/),更新基于PaddleOCR的PDF转txt工具脚本,详见[scripts](./scripts/)
-- 【2024.2.29】更新客观评估计算,详见[evaluate](./evaluate/),更新一系列数据集,详见[datasets](./datasets/)
-- 【2024.2.27】更新英文readme和一系列数据集(舔狗和单轮对话)
-- 【2024.2.23】推出基于InternLM2_7B_chat_qlora的 `温柔御姐心理医生艾薇`,[点击获取模型权重](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_aiwei),[配置文件](xtuner_config/aiwei-internlm2_chat_7b_qlora.py),[在线体验链接](https://openxlab.org.cn/apps/detail/ajupyter/EmoLLM-aiwei)
-- 【2024.2.23】更新[若干微调配置](/xtuner_config/),新增 [data_pro.json](/datasets/data_pro.json)(数量更多、场景更全、更丰富)和 [aiwei.json](/datasets/aiwei.json)(温柔御姐角色扮演专用,带有Emoji表情),即将推出 `温柔御姐心理医生艾薇`
-- 【2024.2.18】 [基于Qwen1_5-0_5B-Chat全量微调版本开源](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary),算力有限的道友可以玩起来~
-
-
-查看更多
-
-- 【2024.2.6】 EmoLLM在[**Openxlab** ](https://openxlab.org.cn/models/detail/jujimeizuo/EmoLLM_Model) 平台下载量高达18.7k,欢迎大家体验!
-
-
-
-
-
-- 【2024.2.5】 项目荣获公众号**NLP工程化**推文宣传[推文链接](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A),为博主推广一波,欢迎大家关注!!🥳🥳
-
-
-
-
-
-- 【2024.2.3】 [项目宣传视频](https://www.bilibili.com/video/BV1N7421N76X/)完成 😊
-- 【2024.1.27】 完善数据构建文档、微调指南、部署指南、Readme等相关文档 👏
-- 【2024.1.25】 EmoLLM V1.0 已部署上线 https://openxlab.org.cn/apps/detail/jujimeizuo/EmoLLM 😀
-
-
-
-### 🏆荣誉栏
-
-- 项目荣获上海人工智能实验室举办的**2024浦源大模型系列挑战赛春季赛*****创新创意奖***
-
-
-
-
-
-
-- 项目荣获公众号**NLP工程化**[推文宣传](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A)
-
-### 🎯路线图
-
-
-
-
-
-
-### 🔗框架图
-
-
-
-
-
-
-## 目录
-
-- [EmoLLM-心理健康大模型](#emollm-心理健康大模型)
- - [🎇最近更新](#最近更新)
- - [🏆荣誉栏](#荣誉栏)
- - [🎯路线图](#路线图)
- - [🔗框架图](#框架图)
- - [目录](#目录)
- - [开发前的配置要求](#开发前的配置要求)
- - [**使用指南**](#使用指南)
- - [快速体验](#快速体验)
- - [数据构建](#数据构建)
- - [微调指南](#微调指南)
- - [部署指南](#部署指南)
- - [RAG(检索增强生成)Pipeline](#rag检索增强生成pipeline)
- - [使用到的框架](#使用到的框架)
- - [如何参与本项目](#如何参与本项目)
- - [作者(排名不分先后)](#作者排名不分先后)
- - [版权说明](#版权说明)
- - [引用](#引用)
- - [特别鸣谢](#特别鸣谢)
- - [Star History](#star-history)
- - [🌟 Contributors](#-contributors)
- - [交流群](#交流群)
-
-###### 开发前的配置要求
-
-- 硬件:A100 40G(仅针对InternLM2_7B_chat+qlora微调+deepspeed zero2优化)
-
-###### **使用指南**
-
-1. Clone the repo
-
-```sh
-git clone https://github.com/SmartFlowAI/EmoLLM.git
-```
-
-2. 依次阅读或者选择感兴趣的部分阅读:
- - [快速体验](#快速体验)
- - [数据构建](#数据构建)
- - [微调指南](#微调指南)
- - [部署指南](#部署指南)
- - [RAG](#rag检索增强生成pipeline)
- - 查看更多详情
-
-
-### 🍪快速体验
-
-- 请阅读[快速体验](docs/quick_start.md)查阅
-
-
-### 📌数据构建
-
-- 请阅读[数据构建指南](generate_data/tutorial.md)查阅
-
-- 微调用到的数据集见[datasets](datasets/data.json)
-
-### 🎨微调指南
-
-详见[微调指南](xtuner_config/README.md)
-
-### 🔧部署指南
-
-- Demo部署:详见[部署指南](demo/README.md)
-- 基于[LMDeploy](https://github.com/InternLM/lmdeploy/)的量化部署:详见[deploy](./deploy/lmdeploy.md)
-
-### ⚙RAG(检索增强生成)Pipeline
-
-- 详见[RAG](./rag/)
-
-
-更多详情
-
-### 使用到的框架
-
-- [Xtuner](https://github.com/InternLM/xtuner):用于微调
-- [Transformers](https://github.com/huggingface/transformers)
-- [Pytorch](https://pytorch.org/)
-- [LMDeploy](https://github.com/InternLM/lmdeploy/):用于量化部署
-- [Stremlit](https://streamlit.io/):用于构建Demo
-- [DeepSpeed](https://github.com/microsoft/DeepSpeed):并行训练
-- …
-
-#### 如何参与本项目
-
-贡献使开源社区成为一个学习、激励和创造的绝佳场所。你所作的任何贡献都是**非常感谢**的。
-
-1. Fork the Project
-2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
-3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
-4. Push to the Branch (`git push origin feature/AmazingFeature`)
-5. Open a Pull Request
-
-
-
-### 作者(排名不分先后)
-
-| 用户名 | 学校/组织 | 备注 | 贡献 |
-| :-----------------------------------------------------------: | :------------------------------------------------: | :------------------------------------------------------------------: | :-------------------------------------------: |
-| [aJupyter](https://github.com/aJupyter) | 南开大学在读硕士 | DataWhale成员 | 项目发起人 |
-| [MING-ZCH](https://github.com/MING-ZCH) | 华中科技大学在读本科生 | LLM x Psychology 研究者 | 项目联合负责人 |
-| [jujimeizuo](https://github.com/jujimeizuo) | 江南大学在读硕士 | | |
-| [Smiling-Weeping-zhr](https://github.com/Smiling-Weeping-zhr) | 哈尔滨工业大学(威海)在读本科生 | | |
-| [8baby8](https://github.com/8baby8) | 飞桨领航团区域主管 | 文心大模型核心开发者 | |
-| [zxazys](https://github.com/zxazys) | 南开大学在读硕士 | | |
-| [JasonLLLLLLLLLLL](https://github.com/JasonLLLLLLLLLLL) | swufe | | |
-| [MrCatAI](https://github.com/MrCatAI) | AI搬用工 | | |
-| [ZeyuBa](https://github.com/ZeyuBa) | 自动化所在读硕士 | | |
-| [aiyinyuedejustin](https://github.com/aiyinyuedejustin) | 宾夕法尼亚大学在读硕士 | | |
-| [Nobody-ML](https://github.com/Nobody-ML) | 中国石油大学(华东)在读本科生 | | |
-| [chg0901](https://github.com/chg0901) | [MiniSora](https://github.com/mini-sora/minisora/) | [MiniSora](https://github.com/mini-sora/minisora/)主要维护者,管理员 | LLM预训练和微调、模型上传、数据清洗、文档翻译 |
-| [Mxoder](https://github.com/Mxoder) | 北京航空航天大学在读本科生 | | |
-| [Anooyman](https://github.com/Anooyman) | 南京理工大学硕士 | | |
-| [Vicky-3021](https://github.com/Vicky-3021) | 西安电子科技大学硕士(研0) | | |
-| [SantiagoTOP](https://github.com/santiagoTOP) | 太原理工大学在读硕士 | | |
-| [zealot52099](https://github.com/zealot52099) | 个人开发者 | | 清洗数据、LLM微调、RAG |
-| [wwwyfff](https://github.com/wwwyfff) | 复旦大学在读硕士 | | |
-| [jkhumor](https://github.com/jkhumor) | 南开大学在读硕士 | | RAG |
-| [lll997150986](https://github.com/lll997150986) | 南开大学在读硕士 | | 微调 |
-| [nln-maker](https://github.com/nln-maker) | 南开大学在读硕士 | | 前后端开发 |
-| [dream00001](https://github.com/dream00001) | 南开大学在读硕士 | | 前后端开发 |
-| [王几行XING](https://zhihu.com/people/brycewang1898) | 北京大学硕士毕业 | | 清洗数据、LLM微调、前后端开发 |
-| [思在] | 北京大学硕士毕业(微软美国) | | LLM微调、前后端开发 |
-
-### 版权说明
-
-该项目签署了 MIT 授权许可,详情请参阅 [LICENSE](https://github.com/SmartFlowAI/EmoLLM/blob/main/LICENSE)
-
-### 引用
-
-如果本项目对您的工作有所帮助,请使用以下格式引用:
-
-```bibtex
-@misc{EmoLLM,
- title={EmoLLM},
- author={EmoLLM},
- url={https://github.com/SmartFlowAI/EmoLLM/},
- year={2024}
-}
-```
-
-### 特别鸣谢
-
-- [Sanbu](https://github.com/sanbuphy)
-- [上海人工智能实验室](https://www.shlab.org.cn/)
-- [闻星大佬(小助手)](https://github.com/vansin)
-- [扫地升(公众号宣传)](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A)
-- 阿布(北大心理学硕士)
-- [HatBoy](https://github.com/hatboy)
-
-
-
-
-
-
-
-## Star History
-
-[![Star History Chart](https://api.star-history.com/svg?repos=SmartFlowAI/EmoLLM&type=Date)](https://star-history.com/#SmartFlowAI/EmoLLM&Date)
-
-## 🌟 Contributors
-
-[![EmoLLM contributors](https://contrib.rocks/image?repo=SmartFlowAI/EmoLLM&max=50)](https://github.com/SmartFlowAI/EmoLLM/graphs/contributors)
-
-[your-project-path]: SmartflowAI/EmoLLM
-[contributors-shield]: https://img.shields.io/github/contributors/SmartflowAI/EmoLLM.svg?style=flat-square
-[contributors-url]: https://github.com/SmartflowAI/EmoLLM/graphs/contributors
-[forks-shield]: https://img.shields.io/github/forks/SmartflowAI/EmoLLM.svg?style=flat-square
-[forks-url]: https://github.com/SmartflowAI/EmoLLM/network/members
-[stars-shield]: https://img.shields.io/github/stars/SmartflowAI/EmoLLM.svg?style=flat-square
-[stars-url]: https://github.com/SmartflowAI/EmoLLM/stargazers
-[issues-shield]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg?style=flat-square
-[issues-url]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg
-[license-shield]: https://img.shields.io/github/license/SmartflowAI/EmoLLM.svg?style=flat-square
-[license-url]: https://github.com/SmartFlowAI/EmoLLM/blob/main/LICENSE
-
-[OpenXLab_App-image]: https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg
-[OpenXLab_Model-image]: https://cdn-static.openxlab.org.cn/header/openxlab_models.svg
-[OpenXLab_App-url]: https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0
-[OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full
-
-## 交流群
-
-- 如果失效,请移步Issue区
-
-
-
-
+
+
+# EmoLLM-心理健康大模型
+
+
+
+
+
+
+
+
+
+
+
+[![Contributors][contributors-shield]][contributors-url]
+[![Forks][forks-shield]][forks-url]
+[![Issues][issues-shield]][issues-url]
+[![OpenXLab_App][OpenXLab_App-image]][OpenXLab_App-url]
+[![OpenXLab_Model][OpenXLab_Model-image]][OpenXLab_Model-url]
+[![MIT License][license-shield]][license-url]
+[![Stargazers][stars-shield]][stars-url]
+
+
+
+EmoLLM
+
+
+
+
+
+**EmoLLM** 是一系列能够支持 **理解用户-支持用户-帮助用户** 心理健康辅导链路的心理健康大模型,由 `LLM`指令微调而来,欢迎大家star~⭐⭐。目前已经开源的 `LLM` 微调配置如下:
+
+
+
+| 模型 | 类型 | 链接 |
+| :-------------------: | :------: | :---: |
+| InternLM2_7B_chat | QLORA | |
+| InternLM2_7B_chat | 全量微调 | |
+| InternLM2_7B_base | QLORA | [internlm2_7b_base_qlora_e10_M_1e4_32_64.py](./xtuner_config/internlm2_7b_base_qlora_e10_M_1e4_32_64.py) |
+| InternLM2_1_8B_chat | 全量微调 | |
+| InternLM2_20B_chat | LORA | |
+| Qwen_7b_chat | QLORA | |
+| Qwen1_5-0_5B-Chat | 全量微调 | |
+| Baichuan2_13B_chat | QLORA | |
+| ChatGLM3_6B | LORA | |
+| DeepSeek MoE_16B_chat | QLORA | |
+| Mixtral 8x7B_instruct | QLORA | |
+| …… | …… | …… |
+
+
+
+欢迎大家为本项目做出贡献~
+
+---
+
+心理健康大模型(Mental Health Grand Model)是一个综合性的概念,它旨在全面理解和促进个体、群体乃至整个社会的心理健康状态。这个模型通常包含以下几个关键组成部分:
+
+- 认知因素:涉及个体的思维模式、信念系统、认知偏差以及解决问题的能力。认知因素对心理健康有重要影响,因为它们影响个体如何解释和应对生活中的事件。
+- 情感因素:包括情绪调节、情感表达和情感体验。情感健康是心理健康的重要组成部分,涉及个体如何管理和表达自己的情感,以及如何从负面情绪中恢复。
+- 行为因素:涉及个体的行为模式、习惯和应对策略。这包括应对压力的技巧、社交技能以及自我效能感,即个体对自己能力的信心。
+- 社会环境:包括家庭、工作、社区和文化背景等外部因素,这些因素对个体的心理健康有着直接和间接的影响。
+- 生理健康:身体健康与心理健康紧密相关。良好的身体健康可以促进心理健康,反之亦然。
+- 心理韧性:指个体在面对逆境时的恢复力和适应能力。心理韧性强的人更能够从挑战中恢复,并从中学习和成长。
+- 预防和干预措施:心理健康大模型还包括预防心理问题和促进心理健康的策略,如心理教育、心理咨询、心理治疗和社会支持系统。
+- 评估和诊断工具:为了有效促进心理健康,需要有科学的工具来评估个体的心理状态,以及诊断可能存在的心理问题。
+
+
+
+
+### 🎇最近更新
+
+- 【2024.4.2】在 Huggingface 上传[老母亲心理咨询师](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
+- 【2024.3.25】在百度飞桨平台发布[爹系男友心理咨询师](https://aistudio.baidu.com/community/app/68787)
+- 【2024.3.24】在**OpenXLab**和**ModelScope**平台发布**InternLM2-Base-7B QLoRA微调模型**, 具体请查看[**InternLM2-Base-7B QLoRA**](./xtuner_config/README_internlm2_7b_base_qlora.md)
+- 【2024.3.12】在百度飞桨平台发布[艾薇](https://aistudio.baidu.com/community/app/63335)
+- 【2024.3.11】 **EmoLLM V2.0 相比 EmoLLM V1.0 全面提升,已超越 Role-playing ChatGPT 在心理咨询任务上的能力!**[点击体验EmoLLM V2.0](https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0),更新[数据集统计及详细信息](./datasets/)、[路线图](./assets/Roadmap_ZH.png)
+- 【2024.3.9】 新增并发功能加速 [QA 对生成](./scripts/qa_generation/)、[RAG pipeline](./rag/)
+- 【2024.3.3】 [基于InternLM2-7B-chat全量微调版本EmoLLM V2.0开源](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full),需要两块A100*80G,更新专业评估,详见[evaluate](./evaluate/),更新基于PaddleOCR的PDF转txt工具脚本,详见[scripts](./scripts/)
+- 【2024.2.29】更新客观评估计算,详见[evaluate](./evaluate/),更新一系列数据集,详见[datasets](./datasets/)
+- 【2024.2.27】更新英文readme和一系列数据集(舔狗和单轮对话)
+- 【2024.2.23】推出基于InternLM2_7B_chat_qlora的 `温柔御姐心理医生艾薇`,[点击获取模型权重](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_aiwei),[配置文件](xtuner_config/aiwei-internlm2_chat_7b_qlora.py),[在线体验链接](https://openxlab.org.cn/apps/detail/ajupyter/EmoLLM-aiwei)
+- 【2024.2.23】更新[若干微调配置](/xtuner_config/),新增 [data_pro.json](/datasets/data_pro.json)(数量更多、场景更全、更丰富)和 [aiwei.json](/datasets/aiwei.json)(温柔御姐角色扮演专用,带有Emoji表情),即将推出 `温柔御姐心理医生艾薇`
+- 【2024.2.18】 [基于Qwen1_5-0_5B-Chat全量微调版本开源](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary),算力有限的道友可以玩起来~
+
+
+查看更多
+
+- 【2024.2.6】 EmoLLM在[**Openxlab** ](https://openxlab.org.cn/models/detail/jujimeizuo/EmoLLM_Model) 平台下载量高达18.7k,欢迎大家体验!
+
+
+
+
+
+- 【2024.2.5】 项目荣获公众号**NLP工程化**推文宣传[推文链接](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A),为博主推广一波,欢迎大家关注!!🥳🥳
+
+
+
+
+
+- 【2024.2.3】 [项目宣传视频](https://www.bilibili.com/video/BV1N7421N76X/)完成 😊
+- 【2024.1.27】 完善数据构建文档、微调指南、部署指南、Readme等相关文档 👏
+- 【2024.1.25】 EmoLLM V1.0 已部署上线 https://openxlab.org.cn/apps/detail/jujimeizuo/EmoLLM 😀
+
+
+
+### 🏆荣誉栏
+
+- 项目荣获上海人工智能实验室举办的**2024浦源大模型系列挑战赛春季赛*****创新创意奖***
+
+
+
+
+
+
+- 项目荣获公众号**NLP工程化**[推文宣传](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A)
+
+### 🎯路线图
+
+
+
+
+
+
+### 🔗框架图
+
+
+
+
+
+
+## 目录
+
+- [EmoLLM-心理健康大模型](#emollm-心理健康大模型)
+ - [🎇最近更新](#最近更新)
+ - [🏆荣誉栏](#荣誉栏)
+ - [🎯路线图](#路线图)
+ - [🔗框架图](#框架图)
+ - [目录](#目录)
+ - [开发前的配置要求](#开发前的配置要求)
+ - [**使用指南**](#使用指南)
+ - [🍪快速体验](#快速体验)
+ - [📌数据构建](#数据构建)
+ - [🎨微调指南](#微调指南)
+ - [🔧部署指南](#部署指南)
+ - [⚙RAG(检索增强生成)Pipeline](#rag检索增强生成pipeline)
+ - [使用到的框架](#使用到的框架)
+ - [如何参与本项目](#如何参与本项目)
+ - [作者(排名不分先后)](#作者排名不分先后)
+ - [版权说明](#版权说明)
+ - [引用](#引用)
+ - [特别鸣谢](#特别鸣谢)
+ - [Star History](#star-history)
+ - [🌟 Contributors](#-contributors)
+ - [交流群](#交流群)
+
+###### 开发前的配置要求
+
+- 硬件:A100 40G(仅针对InternLM2_7B_chat+qlora微调+deepspeed zero2优化)
+
+###### **使用指南**
+
+1. Clone the repo
+
+```sh
+git clone https://github.com/SmartFlowAI/EmoLLM.git
+```
+
+2. 依次阅读或者选择感兴趣的部分阅读:
+ - [快速体验](#快速体验)
+ - [数据构建](#数据构建)
+ - [微调指南](#微调指南)
+ - [部署指南](#部署指南)
+ - [RAG](#rag检索增强生成pipeline)
+ - 查看更多详情
+
+
+### 🍪快速体验
+
+- 请阅读[快速体验](docs/quick_start.md)查阅
+
+
+### 📌数据构建
+
+- 请阅读[数据构建指南](generate_data/tutorial.md)查阅
+
+- 微调用到的数据集见[datasets](datasets/data.json)
+
+### 🎨微调指南
+
+详见[微调指南](xtuner_config/README.md)
+
+### 🔧部署指南
+
+- Demo部署:详见[部署指南](demo/README.md)
+- 基于[LMDeploy](https://github.com/InternLM/lmdeploy/)的量化部署:详见[deploy](./deploy/lmdeploy.md)
+
+### ⚙RAG(检索增强生成)Pipeline
+
+- 详见[RAG](./rag/)
+
+
+更多详情
+
+### 使用到的框架
+
+- [Xtuner](https://github.com/InternLM/xtuner):用于微调
+- [Transformers](https://github.com/huggingface/transformers)
+- [Pytorch](https://pytorch.org/)
+- [LMDeploy](https://github.com/InternLM/lmdeploy/):用于量化部署
+- [Stremlit](https://streamlit.io/):用于构建Demo
+- [DeepSpeed](https://github.com/microsoft/DeepSpeed):并行训练
+- …
+
+#### 如何参与本项目
+
+贡献使开源社区成为一个学习、激励和创造的绝佳场所。你所作的任何贡献都是**非常感谢**的。
+
+1. Fork the Project
+2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
+3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
+4. Push to the Branch (`git push origin feature/AmazingFeature`)
+5. Open a Pull Request
+
+
+
+### 作者(排名不分先后)
+
+| 用户名 | 学校/组织 | 备注 | 贡献 |
+| :-----------------------------------------------------------: | :------------------------------------------------: | :------------------------------------------------------------------: | :-------------------------------------------: |
+| [aJupyter](https://github.com/aJupyter) | 南开大学在读硕士 | DataWhale成员 | 项目发起人 |
+| [MING-ZCH](https://github.com/MING-ZCH) | 华中科技大学在读本科生 | LLM x Psychology 研究者 | 项目联合负责人 |
+| [jujimeizuo](https://github.com/jujimeizuo) | 江南大学在读硕士 | | |
+| [Smiling-Weeping-zhr](https://github.com/Smiling-Weeping-zhr) | 哈尔滨工业大学(威海)在读本科生 | | |
+| [8baby8](https://github.com/8baby8) | 飞桨领航团区域主管 | 文心大模型核心开发者 | |
+| [zxazys](https://github.com/zxazys) | 南开大学在读硕士 | | |
+| [JasonLLLLLLLLLLL](https://github.com/JasonLLLLLLLLLLL) | swufe | | |
+| [MrCatAI](https://github.com/MrCatAI) | AI搬用工 | | |
+| [ZeyuBa](https://github.com/ZeyuBa) | 自动化所在读硕士 | | |
+| [aiyinyuedejustin](https://github.com/aiyinyuedejustin) | 宾夕法尼亚大学在读硕士 | | |
+| [Nobody-ML](https://github.com/Nobody-ML) | 中国石油大学(华东)在读本科生 | | |
+| [chg0901](https://github.com/chg0901) | [MiniSora](https://github.com/mini-sora/minisora/) | [MiniSora](https://github.com/mini-sora/minisora/)主要维护者,管理员 | LLM预训练和微调、模型上传、数据清洗、文档翻译 |
+| [Mxoder](https://github.com/Mxoder) | 北京航空航天大学在读本科生 | | |
+| [Anooyman](https://github.com/Anooyman) | 南京理工大学硕士 | | |
+| [Vicky-3021](https://github.com/Vicky-3021) | 西安电子科技大学硕士(研0) | | |
+| [SantiagoTOP](https://github.com/santiagoTOP) | 太原理工大学在读硕士 | | |
+| [zealot52099](https://github.com/zealot52099) | 个人开发者 | | 清洗数据、LLM微调、RAG |
+| [wwwyfff](https://github.com/wwwyfff) | 复旦大学在读硕士 | | |
+| [jkhumor](https://github.com/jkhumor) | 南开大学在读硕士 | | RAG |
+| [lll997150986](https://github.com/lll997150986) | 南开大学在读硕士 | | 微调 |
+| [nln-maker](https://github.com/nln-maker) | 南开大学在读硕士 | | 前后端开发 |
+| [dream00001](https://github.com/dream00001) | 南开大学在读硕士 | | 前后端开发 |
+| [王几行XING](https://zhihu.com/people/brycewang1898) | 北京大学硕士毕业 | | 清洗数据、LLM微调、前后端开发 |
+| [思在] | 北京大学硕士毕业(微软美国) | | LLM微调、前后端开发 |
+
+### 版权说明
+
+该项目签署了 MIT 授权许可,详情请参阅 [LICENSE](https://github.com/SmartFlowAI/EmoLLM/blob/main/LICENSE)
+
+### 引用
+
+如果本项目对您的工作有所帮助,请使用以下格式引用:
+
+```bibtex
+@misc{EmoLLM,
+ title={EmoLLM},
+ author={EmoLLM},
+ url={https://github.com/SmartFlowAI/EmoLLM/},
+ year={2024}
+}
+```
+
+### 特别鸣谢
+
+- [Sanbu](https://github.com/sanbuphy)
+- [上海人工智能实验室](https://www.shlab.org.cn/)
+- [闻星大佬(小助手)](https://github.com/vansin)
+- [扫地升(公众号宣传)](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A)
+- 阿布(北大心理学硕士)
+- [HatBoy](https://github.com/hatboy)
+
+
+
+
+
+
+
+## Star History
+
+[![Star History Chart](https://api.star-history.com/svg?repos=SmartFlowAI/EmoLLM&type=Date)](https://star-history.com/#SmartFlowAI/EmoLLM&Date)
+
+## 🌟 Contributors
+
+[![EmoLLM contributors](https://contrib.rocks/image?repo=SmartFlowAI/EmoLLM&max=50)](https://github.com/SmartFlowAI/EmoLLM/graphs/contributors)
+
+[your-project-path]: SmartflowAI/EmoLLM
+[contributors-shield]: https://img.shields.io/github/contributors/SmartflowAI/EmoLLM.svg?style=flat-square
+[contributors-url]: https://github.com/SmartflowAI/EmoLLM/graphs/contributors
+[forks-shield]: https://img.shields.io/github/forks/SmartflowAI/EmoLLM.svg?style=flat-square
+[forks-url]: https://github.com/SmartflowAI/EmoLLM/network/members
+[stars-shield]: https://img.shields.io/github/stars/SmartflowAI/EmoLLM.svg?style=flat-square
+[stars-url]: https://github.com/SmartflowAI/EmoLLM/stargazers
+[issues-shield]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg?style=flat-square
+[issues-url]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg
+[license-shield]: https://img.shields.io/github/license/SmartflowAI/EmoLLM.svg?style=flat-square
+[license-url]: https://github.com/SmartFlowAI/EmoLLM/blob/main/LICENSE
+
+[OpenXLab_App-image]: https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg
+[OpenXLab_Model-image]: https://cdn-static.openxlab.org.cn/header/openxlab_models.svg
+[OpenXLab_App-url]: https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0
+[OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full
+
+## 交流群
+
+- 如果失效,请移步Issue区
+
+
+
+
\ No newline at end of file
diff --git a/README_EN.md b/README_EN.md
index c8d3cf3..bb9d34a 100644
--- a/README_EN.md
+++ b/README_EN.md
@@ -1,343 +1,343 @@
-
-
-# EmoLLM - Large Language Model for Mental Health
-
-
-
-
-
-
-
-
-
-
-
-[![Contributors][contributors-shield]][contributors-url]
-[![Forks][forks-shield]][forks-url]
-[![Issues][issues-shield]][issues-url]
-[![OpenXLab_App][OpenXLab_App-image]][OpenXLab_App-url]
-[![OpenXLab_Model][OpenXLab_Model-image]][OpenXLab_Model-url]
-[![MIT License][license-shield]][license-url]
-[![Stargazers][stars-shield]][stars-url]
-
-
-
-EmoLLM
-
-
- 简体中文 | English
-
-
- Explore the documentation of this project »
-
-
- EmoLLM 2.0 Demo
- ·
- Report a Bug
- ·
- Propose a New Feature
-
-
-
-
-
-
-**EmoLLM** is a series of large language models designed to understand, support and help customers in mental health counseling. It is fine-tuned from the LLM instructions. We really appreciate it if you could give it a star~⭐⭐. The open-sourced configuration is as follows:
-
-
-
-| Model | Type | link |
-| :-------------------: | :--------------: | :---: |
-| InternLM2_7B_chat | QLORA | |
-| InternLM2_7B_chat | full fine-tuning | |
-| InternLM2_7B_base | QLORA | |
-| InternLM2_1_8B_chat | full fine-tuning | |
-| InternLM2_20B_chat | LORA | |
-| Qwen_7b_chat | QLORA | |
-| Qwen1_5-0_5B-Chat | full fine-tuning | |
-| Baichuan2_13B_chat | QLORA | |
-| ChatGLM3_6B | LORA | |
-| DeepSeek MoE_16B_chat | QLORA | |
-| Mixtral 8x7B_instruct | QLORA | |
-| …… | …… | …… |
-
-
-
-Everyone is welcome to contribute to this project ~
-
----
-
-The Model aims to fully understand and promote the mental health of individuals, groups, and society. This model typically includes the following key components:
-
-- Cognitive factors: Involving an individual's thought patterns, belief systems, cognitive biases, and problem-solving abilities. Cognitive factors significantly impact mental health as they affect how individuals interpret and respond to life events.
-- Emotional factors: Including emotion regulation, emotional expression, and emotional experiences. Emotional health is a crucial part of mental health, involving how individuals manage and express their emotions and how they recover from negative emotions.
-- Behavioral factors: Concerning an individual's behavior patterns, habits, and coping strategies. This includes stress management skills, social skills, and self-efficacy, which is the confidence in one's abilities.
-- Social environment: Comprising external factors such as family, work, community, and cultural background, which have direct and indirect impacts on an individual's mental health.
-- Physical health: There is a close relationship between physical and mental health. Good physical health can promote mental health and vice versa.
-- Psychological resilience: Refers to an individual's ability to recover from adversity and adapt. Those with strong psychological resilience can bounce back from challenges and learn and grow from them.
-- Prevention and intervention measures: The Mental Health Grand Model also includes strategies for preventing psychological issues and promoting mental health, such as psychological education, counseling, therapy, and social support systems.
-- Assessment and diagnostic tools: Effective promotion of mental health requires scientific tools to assess individuals' psychological states and diagnose potential psychological issues.
-
-
-
-
-### Recent Updates
-- 【2024.3.25】 [Mother-like Therapist] is released on Huggingface (https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
-- 【2024.3.25】 [Daddy-like Boy-Friend] is released on Baidu Paddle-Paddle AI Studio Platform (https://aistudio.baidu.com/community/app/68787)
-- 【2024.3.24】 The InternLM2-Base-7B QLoRA fine-tuned model has been released on the OpenXLab and ModelScope platforms. For more details, please refer to [InternLM2-Base-7B QLoRA](./xtuner_config/README_internlm2_7b_base_qlora.md).
-- 【2024.3.12】 [aiwei] is released on Baidu Paddle-Paddle AI Studio Platform (https://aistudio.baidu.com/community/app/63335)
-- 【2024.3.11】 **EmoLLM V2.0 is greatly improved in all scores compared to EmoLLM V1.0. Surpasses the performance of Role-playing ChatGPT on counseling tasks!** [Click to experience EmoLLM V2.0](https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0), update [dataset statistics and details](./datasets/), [Roadmap](./assets/Roadmap_ZH.png)
-- 【2024.3.9】 Add concurrency acceleration [QA pair generation](./scripts/qa_generation/), [RAG pipeline](./rag/)
-- 【2024.3.3】 [Based on InternLM2-7B-chat full fine-tuned version EmoLLM V2.0 open sourced](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full), need two A100*80G, update professional evaluation, see [evaluate](./evaluate/), update PaddleOCR-based PDF to txt tool scripts, see [scripts](./scripts/).
-- 【2024.2.29】 Updated objective assessment calculations, see [evaluate](./evaluate/) for details. A series of datasets have also been updated, see [datasets](./datasets/) for details.
-- 【2024.2.27】 Updated English README and a series of datasets (licking dogs and one-round dialogue)
-- 【2024.2.23】The "Gentle Lady Psychologist Ai Wei" based on InternLM2_7B_chat_qlora was launched. [Click here to obtain the model weights](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_aiwei), [configuration file](xtuner_config/aiwei-internlm2_chat_7b_qlora.py), [online experience link](https://openxlab.org.cn/apps/detail/ajupyter/EmoLLM-aiwei)
-
-- 【2024.2.23】Updated [several fine-tuning configurations](/xtuner_config/), added [data_pro.json](/datasets/data_pro.json) (more quantity, more comprehensive scenarios, richer content) and [aiwei.json](/datasets/aiwei.json) (dedicated to the gentle lady role-play, featuring Emoji expressions), the "Gentle Lady Psychologist Ai Wei" is coming soon.
-
-- 【2024.2.18】 The full fine-tuned version based on Qwen1_5-0_5B-Chat has been [open-sourced](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary). Friends with limited computational resources can now dive in and explore it.
-
-
-View More
-
-- 【2024.2.6】 [Open-sourced based on the Qwen1_5-0_5B-Chat full-scale fine-tuned version](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary), friends with limited computing power can start experimenting~
-
-
-
-
-
-- 【2024.2.5】 The project has been promoted by the official WeChat account NLP Engineering. Here's the [link](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A) to the article. Welcome everyone to follow!! 🥳🥳
-
-
-
-
-
-- 【2024.2.3】 [Project Vedio](https://www.bilibili.com/video/BV1N7421N76X/) at bilibili 😊
-- 【2024.1.27】 Complete data construction documentation, fine-tuning guide, deployment guide, Readme, and other related documents 👏
-- 【2024.1.25】 EmoLLM V1.0 has deployed online https://openxlab.org.cn/apps/detail/jujimeizuo/EmoLLM 😀
-
-
-
-### Honors
-
-- The project won the ***the Innovation and Creativity Award*** in the **2024 Puyuan Large Model Series Challenge Spring Competition held by the Shanghai Artificial Intelligence Laboratory**
-
-
-
-
-
-
-
-- The project has been promoted by the official WeChat account **NLP Engineering**. Here's the [link](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A).
-
-### Roadmap
-
-
-
-
-
-
-## Contents
-
-- [EmoLLM - Large Language Model for Mental Health](#emollm---large-language-model-for-mental-health)
- - [Recent Updates](#recent-updates)
- - [Honors](#honors)
- - [Roadmap](#roadmap)
- - [Contents](#contents)
- - [Pre-development Configuration Requirements.](#pre-development-configuration-requirements)
- - [**User Guide**](#user-guide)
- - [File Directory Explanation](#file-directory-explanation)
- - [Data Construction](#data-construction)
- - [Fine-tuning Guide](#fine-tuning-guide)
- - [Deployment Guide](#deployment-guide)
- - [RAG (Retrieval Augmented Generation) Pipeline](#rag-retrieval-augmented-generation-pipeline)
- - [Frameworks Used](#frameworks-used)
- - [How to participate in this project](#how-to-participate-in-this-project)
- - [Version control](#version-control)
- - [Authors (in no particular order)](#authors-in-no-particular-order)
- - [Copyright Notice](#copyright-notice)
- - [Acknowledgments](#acknowledgments)
- - [Star History](#star-history)
- - [🌟 Contributors](#-contributors)
- - [Communication group](#communication-group)
-
-###### Pre-development Configuration Requirements.
-
-- A100 40G (specifically for InternLM2_7B_chat + qlora fine-tuning + deepspeed zero2 optimization)
-
-###### **User Guide**
-
-1. Clone the repo
-
-```sh
-git clone https://github.com/SmartFlowAI/EmoLLM.git
-```
-
-1. Read in sequence or read sections you're interested in:
- - [Quick Start](#quick-start)
- - [Data Construction](#data-construction)
- - [Fine-tuning Guide](#fine-tuning-guide)
- - [Deployment Guide](#deployment-guide)
- - [RAG](#rag-retrieval-augmented-generation-pipeline)
- - View More Details
-
-
-### 🍪Quick start
-- Please read [Quick Start](docs/quick_start_EN.md) to see.
-
-### 📌Data Construction
-
-- Please read the [Data Construction Guide ](generate_data/tutorial_EN.md)for reference.
-
-- The dataset used for this fine-tuning can be found at [datasets](datasets/data.json)
-
-### 🎨Fine-tuning Guide
-
-For details, see the [fine-tuning guide](xtuner_config/README_EN.md)
-
-### 🔧Deployment Guide
-
-- Demo deployment: see [deployment guide](./demo/README_EN.md) for details.
-- Quantitative deployment based on [LMDeploy](https://github.com/InternLM/lmdeploy/): see [deploy](./deploy/lmdeploy_EN.md)
-
-### ⚙RAG (Retrieval Augmented Generation) Pipeline
-
-- See [RAG](./rag/)
-
-
-Additional Details
-
-### Frameworks Used
-
-- [Xtuner](https://github.com/InternLM/xtuner)
-- [Transformers](https://github.com/huggingface/transformers)
-- [Pytorch](https://pytorch.org/)
-- [LMDeploy](https://github.com/InternLM/lmdeploy/): for quantitative deployment
-- [Stremlit](https://streamlit.io/): for building demos
-- [DeepSpeed](https://github.com/microsoft/DeepSpeed): for parallel training
-- …
-
-#### How to participate in this project
-
-Contributions make the open-source community an excellent place for learning, inspiration, and creation. Any contribution you make is greatly appreciated.
-
-1. Fork the Project
-2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
-3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
-4. Push to the Branch (`git push origin feature/AmazingFeature`)
-5. Open a Pull Request
-
-### Version control
-
-This project uses Git for version control. You can see the currently available versions in the repository.
-
-
-
-### Authors (in no particular order)
-
-| Username | School/Organization | Remarks | Contributions |
-| :-----------------------------------------------------------: | :------------------------------------------------------------------: | :-----------------------------------------------------------------------: | :-----------------------------------------------------------------------------------: |
-| [aJupyter](https://github.com/aJupyter) | Nankai University, Master's student | DataWhale member | Project initiator |
-| [MING-ZCH](https://github.com/MING-ZCH) | Huazhong University of Science and Technology, Undergraduate student | LLM X Psychology researcher | Project co-leader |
-| [jujimeizuo](https://github.com/jujimeizuo) | Jiangnan University, Master's student | | |
-| [Smiling-Weeping-zhr](https://github.com/Smiling-Weeping-zhr) | Harbin Institute of Technology (Weihai), Undergraduate student | | |
-| [8baby8](https://github.com/8baby8) | PaddlePaddle Pilot Team Regional Director | Wenxin Large Model core developer | |
-| [zxazys](https://github.com/zxazys) | Nankai University, Master's student | | |
-| [JasonLLLLLLLLLLL](https://github.com/JasonLLLLLLLLLLL) | SWUFE (Southwestern University of Finance and Economics) | | |
-| [MrCatAI](https://github.com/MrCatAI) | AI Mover | | |
-| [ZeyuBa](https://github.com/ZeyuBa) | Institute of Automation, Master's student | | |
-| [aiyinyuedejustin](https://github.com/aiyinyuedejustin) | University of Pennsylvania, Master's student | | |
-| [Nobody-ML](https://github.com/Nobody-ML) | China University of Petroleum (East China), Undergraduate student | | |
-| [chg0901](https://github.com/chg0901) | [MiniSora](https://github.com/mini-sora/minisora) | Maintainer and Admin of [MiniSora](https://github.com/mini-sora/minisora) | LLM Pre-Training and Fine-Tuning, Model Uploading, Data Cleaning and Docs Translation |
-| [Mxoder](https://github.com/Mxoder) | Beihang University, Undergraduate student | | |
-| [Anooyman](https://github.com/Anooyman) | Nanjing University of Science and Technology, Master's student | | |
-| [Vicky-3021](https://github.com/Vicky-3021) | Xidian University, Master's student (Research Year 0) | | |
-| [SantiagoTOP](https://github.com/santiagoTOP) | Taiyuan University of Technology, Master's student | | |
-| [zealot52099](https://github.com/zealot52099) | Individual developer | | Data Processing, LLM finetuning and RAG |
-| [wwwyfff](https://github.com/wwwyfff) | FuDan University, Master's student | | |
-| [jkhumor](https://github.com/jkhumor) | Nankai University, Master's student | | RAG |
-| [lll997150986](https://github.com/lll997150986) | Nankai University, Master's student | | Fine Tuning |
-| [nln-maker](https://github.com/nln-maker) | Nankai University, Master's student | | Front-end and back-end development |
-| [dream00001](https://github.com/dream00001) | Nankai University, Master's student | | Front-end and back-end development |
-| [王几行XING](zhihu.com/people/brycewang1898) | Peking University, Master's graduate | | Data Processing, LLM finetuning, Front-end and back-end development |
-| [思在] | Peking University, Master's graduate (Microsoft) | | LLM finetuning, Front-end and back-end development |
-
-### Copyright Notice
-
-The project is licensed under the MIT License. Please refer to the details
- [LICENSE](https://github.com/SmartFlowAI/EmoLLM/blob/master/LICENSE)
-
-### Acknowledgments
-
-- [Sanbu](https://github.com/sanbuphy)
-- [Shanghai Artificial Intelligence Laboratory](https://www.shlab.org.cn/)
-- [Vanin](https://github.com/vansin)
-- [Bloom up (WeChat Official Account Promotion)](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A)
-- Abu (M.A. in Psychology, Peking University)
-- [HatBoy](https://github.com/hatboy)
-
-
-
-
-
-
-
-
-
-## Star History
-
-[![Star History Chart](https://api.star-history.com/svg?repos=SmartFlowAI/EmoLLM&type=Date)](https://star-history.com/#SmartFlowAI/EmoLLM&Date)
-
-## 🌟 Contributors
-
-[![EmoLLM contributors](https://contrib.rocks/image?repo=SmartFlowAI/EmoLLM&max=50)](https://github.com/SmartFlowAI/EmoLLM/graphs/contributors)
-
-[your-project-path]: SmartflowAI/EmoLLM
-[contributors-shield]: https://img.shields.io/github/contributors/SmartflowAI/EmoLLM.svg?style=flat-square
-[contributors-url]: https://github.com/SmartflowAI/EmoLLM/graphs/contributors
-[forks-shield]: https://img.shields.io/github/forks/SmartflowAI/EmoLLM.svg?style=flat-square
-[forks-url]: https://github.com/SmartflowAI/EmoLLM/network/members
-[stars-shield]: https://img.shields.io/github/stars/SmartflowAI/EmoLLM.svg?style=flat-square
-[stars-url]: https://github.com/SmartflowAI/EmoLLM/stargazers
-[issues-shield]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg?style=flat-square
-[issues-url]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg
-[license-shield]: https://img.shields.io/github/license/SmartflowAI/EmoLLM.svg?style=flat-square
-[license-url]: https://github.com/SmartflowAI/EmoLLM/blob/main/LICENSE
-
-[OpenXLab_App-image]: https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg
-[OpenXLab_Model-image]: https://cdn-static.openxlab.org.cn/header/openxlab_models.svg
-[OpenXLab_App-url]: https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0
-[OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full
-
-## Communication group
-
-- If it fails, go to the Issue section.
-
-
-
-
+
+
+# EmoLLM - Large Language Model for Mental Health
+
+
+
+
+
+
+
+
+
+
+
+[![Contributors][contributors-shield]][contributors-url]
+[![Forks][forks-shield]][forks-url]
+[![Issues][issues-shield]][issues-url]
+[![OpenXLab_App][OpenXLab_App-image]][OpenXLab_App-url]
+[![OpenXLab_Model][OpenXLab_Model-image]][OpenXLab_Model-url]
+[![MIT License][license-shield]][license-url]
+[![Stargazers][stars-shield]][stars-url]
+
+
+
+EmoLLM
+
+
+ 简体中文 | English
+
+
+ Explore the documentation of this project »
+
+
+ EmoLLM 2.0 Demo
+ ·
+ Report a Bug
+ ·
+ Propose a New Feature
+
+
+
+
+
+
+**EmoLLM** is a series of large language models designed to understand, support and help customers in mental health counseling. It is fine-tuned from the LLM instructions. We really appreciate it if you could give it a star~⭐⭐. The open-sourced configuration is as follows:
+
+
+
+| Model | Type | link |
+| :-------------------: | :--------------: | :---: |
+| InternLM2_7B_chat | QLORA | |
+| InternLM2_7B_chat | full fine-tuning | |
+| InternLM2_7B_base | QLORA |[internlm2_7b_base_qlora_e10_M_1e4_32_64.py](./xtuner_config/internlm2_7b_base_qlora_e10_M_1e4_32_64.py)|
+| InternLM2_1_8B_chat | full fine-tuning | |
+| InternLM2_20B_chat | LORA | |
+| Qwen_7b_chat | QLORA | |
+| Qwen1_5-0_5B-Chat | full fine-tuning | |
+| Baichuan2_13B_chat | QLORA | |
+| ChatGLM3_6B | LORA | |
+| DeepSeek MoE_16B_chat | QLORA | |
+| Mixtral 8x7B_instruct | QLORA | |
+| …… | …… | …… |
+
+
+
+Everyone is welcome to contribute to this project ~
+
+---
+
+The Model aims to fully understand and promote the mental health of individuals, groups, and society. This model typically includes the following key components:
+
+- Cognitive factors: Involving an individual's thought patterns, belief systems, cognitive biases, and problem-solving abilities. Cognitive factors significantly impact mental health as they affect how individuals interpret and respond to life events.
+- Emotional factors: Including emotion regulation, emotional expression, and emotional experiences. Emotional health is a crucial part of mental health, involving how individuals manage and express their emotions and how they recover from negative emotions.
+- Behavioral factors: Concerning an individual's behavior patterns, habits, and coping strategies. This includes stress management skills, social skills, and self-efficacy, which is the confidence in one's abilities.
+- Social environment: Comprising external factors such as family, work, community, and cultural background, which have direct and indirect impacts on an individual's mental health.
+- Physical health: There is a close relationship between physical and mental health. Good physical health can promote mental health and vice versa.
+- Psychological resilience: Refers to an individual's ability to recover from adversity and adapt. Those with strong psychological resilience can bounce back from challenges and learn and grow from them.
+- Prevention and intervention measures: The Mental Health Grand Model also includes strategies for preventing psychological issues and promoting mental health, such as psychological education, counseling, therapy, and social support systems.
+- Assessment and diagnostic tools: Effective promotion of mental health requires scientific tools to assess individuals' psychological states and diagnose potential psychological issues.
+
+
+
+
+### Recent Updates
+- 【2024.3.25】 [Mother-like Therapist] is released on Huggingface (https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
+- 【2024.3.25】 [Daddy-like Boy-Friend] is released on Baidu Paddle-Paddle AI Studio Platform (https://aistudio.baidu.com/community/app/68787)
+- 【2024.3.24】 The **InternLM2-Base-7B QLoRA fine-tuned model** has been released on the **OpenXLab** and **ModelScope** platforms. For more details, please refer to [**InternLM2-Base-7B QLoRA**](./xtuner_config/README_internlm2_7b_base_qlora.md).
+- 【2024.3.12】 [aiwei] is released on Baidu Paddle-Paddle AI Studio Platform (https://aistudio.baidu.com/community/app/63335)
+- 【2024.3.11】 **EmoLLM V2.0 is greatly improved in all scores compared to EmoLLM V1.0. Surpasses the performance of Role-playing ChatGPT on counseling tasks!** [Click to experience EmoLLM V2.0](https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0), update [dataset statistics and details](./datasets/), [Roadmap](./assets/Roadmap_ZH.png)
+- 【2024.3.9】 Add concurrency acceleration [QA pair generation](./scripts/qa_generation/), [RAG pipeline](./rag/)
+- 【2024.3.3】 [Based on InternLM2-7B-chat full fine-tuned version EmoLLM V2.0 open sourced](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full), need two A100*80G, update professional evaluation, see [evaluate](./evaluate/), update PaddleOCR-based PDF to txt tool scripts, see [scripts](./scripts/).
+- 【2024.2.29】 Updated objective assessment calculations, see [evaluate](./evaluate/) for details. A series of datasets have also been updated, see [datasets](./datasets/) for details.
+- 【2024.2.27】 Updated English README and a series of datasets (licking dogs and one-round dialogue)
+- 【2024.2.23】The "Gentle Lady Psychologist Ai Wei" based on InternLM2_7B_chat_qlora was launched. [Click here to obtain the model weights](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_aiwei), [configuration file](xtuner_config/aiwei-internlm2_chat_7b_qlora.py), [online experience link](https://openxlab.org.cn/apps/detail/ajupyter/EmoLLM-aiwei)
+
+- 【2024.2.23】Updated [several fine-tuning configurations](/xtuner_config/), added [data_pro.json](/datasets/data_pro.json) (more quantity, more comprehensive scenarios, richer content) and [aiwei.json](/datasets/aiwei.json) (dedicated to the gentle lady role-play, featuring Emoji expressions), the "Gentle Lady Psychologist Ai Wei" is coming soon.
+
+- 【2024.2.18】 The full fine-tuned version based on Qwen1_5-0_5B-Chat has been [open-sourced](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary). Friends with limited computational resources can now dive in and explore it.
+
+
+View More
+
+- 【2024.2.6】 [Open-sourced based on the Qwen1_5-0_5B-Chat full-scale fine-tuned version](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary), friends with limited computing power can start experimenting~
+
+
+
+
+
+- 【2024.2.5】 The project has been promoted by the official WeChat account NLP Engineering. Here's the [link](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A) to the article. Welcome everyone to follow!! 🥳🥳
+
+
+
+
+
+- 【2024.2.3】 [Project Vedio](https://www.bilibili.com/video/BV1N7421N76X/) at bilibili 😊
+- 【2024.1.27】 Complete data construction documentation, fine-tuning guide, deployment guide, Readme, and other related documents 👏
+- 【2024.1.25】 EmoLLM V1.0 has deployed online https://openxlab.org.cn/apps/detail/jujimeizuo/EmoLLM 😀
+
+
+
+### Honors
+
+- The project won the ***the Innovation and Creativity Award*** in the **2024 Puyuan Large Model Series Challenge Spring Competition held by the Shanghai Artificial Intelligence Laboratory**
+
+
+
+
+
+
+
+- The project has been promoted by the official WeChat account **NLP Engineering**. Here's the [link](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A).
+
+### Roadmap
+
+
+
+
+
+
+## Contents
+
+- [EmoLLM - Large Language Model for Mental Health](#emollm---large-language-model-for-mental-health)
+ - [Recent Updates](#recent-updates)
+ - [Honors](#honors)
+ - [Roadmap](#roadmap)
+ - [Contents](#contents)
+ - [Pre-development Configuration Requirements.](#pre-development-configuration-requirements)
+ - [**User Guide**](#user-guide)
+ - [🍪Quick start](#quick-start)
+ - [📌Data Construction](#data-construction)
+ - [🎨Fine-tuning Guide](#fine-tuning-guide)
+ - [🔧Deployment Guide](#deployment-guide)
+ - [⚙RAG (Retrieval Augmented Generation) Pipeline](#rag-retrieval-augmented-generation-pipeline)
+ - [Frameworks Used](#frameworks-used)
+ - [How to participate in this project](#how-to-participate-in-this-project)
+ - [Version control](#version-control)
+ - [Authors (in no particular order)](#authors-in-no-particular-order)
+ - [Copyright Notice](#copyright-notice)
+ - [Acknowledgments](#acknowledgments)
+ - [Star History](#star-history)
+ - [🌟 Contributors](#-contributors)
+ - [Communication group](#communication-group)
+
+###### Pre-development Configuration Requirements.
+
+- A100 40G (specifically for InternLM2_7B_chat + qlora fine-tuning + deepspeed zero2 optimization)
+
+###### **User Guide**
+
+1. Clone the repo
+
+```sh
+git clone https://github.com/SmartFlowAI/EmoLLM.git
+```
+
+1. Read in sequence or read sections you're interested in:
+ - [Quick Start](#quick-start)
+ - [Data Construction](#data-construction)
+ - [Fine-tuning Guide](#fine-tuning-guide)
+ - [Deployment Guide](#deployment-guide)
+ - [RAG](#rag-retrieval-augmented-generation-pipeline)
+ - View More Details
+
+
+### 🍪Quick start
+- Please read [Quick Start](docs/quick_start_EN.md) to see.
+
+### 📌Data Construction
+
+- Please read the [Data Construction Guide ](generate_data/tutorial_EN.md)for reference.
+
+- The dataset used for this fine-tuning can be found at [datasets](datasets/data.json)
+
+### 🎨Fine-tuning Guide
+
+For details, see the [fine-tuning guide](xtuner_config/README_EN.md)
+
+### 🔧Deployment Guide
+
+- Demo deployment: see [deployment guide](./demo/README_EN.md) for details.
+- Quantitative deployment based on [LMDeploy](https://github.com/InternLM/lmdeploy/): see [deploy](./deploy/lmdeploy_EN.md)
+
+### ⚙RAG (Retrieval Augmented Generation) Pipeline
+
+- See [RAG](./rag/)
+
+
+Additional Details
+
+### Frameworks Used
+
+- [Xtuner](https://github.com/InternLM/xtuner)
+- [Transformers](https://github.com/huggingface/transformers)
+- [Pytorch](https://pytorch.org/)
+- [LMDeploy](https://github.com/InternLM/lmdeploy/): for quantitative deployment
+- [Stremlit](https://streamlit.io/): for building demos
+- [DeepSpeed](https://github.com/microsoft/DeepSpeed): for parallel training
+- …
+
+#### How to participate in this project
+
+Contributions make the open-source community an excellent place for learning, inspiration, and creation. Any contribution you make is greatly appreciated.
+
+1. Fork the Project
+2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
+3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
+4. Push to the Branch (`git push origin feature/AmazingFeature`)
+5. Open a Pull Request
+
+### Version control
+
+This project uses Git for version control. You can see the currently available versions in the repository.
+
+
+
+### Authors (in no particular order)
+
+| Username | School/Organization | Remarks | Contributions |
+| :-----------------------------------------------------------: | :------------------------------------------------------------------: | :-----------------------------------------------------------------------: | :-----------------------------------------------------------------------------------: |
+| [aJupyter](https://github.com/aJupyter) | Nankai University, Master's student | DataWhale member | Project initiator |
+| [MING-ZCH](https://github.com/MING-ZCH) | Huazhong University of Science and Technology, Undergraduate student | LLM X Psychology researcher | Project co-leader |
+| [jujimeizuo](https://github.com/jujimeizuo) | Jiangnan University, Master's student | | |
+| [Smiling-Weeping-zhr](https://github.com/Smiling-Weeping-zhr) | Harbin Institute of Technology (Weihai), Undergraduate student | | |
+| [8baby8](https://github.com/8baby8) | PaddlePaddle Pilot Team Regional Director | Wenxin Large Model core developer | |
+| [zxazys](https://github.com/zxazys) | Nankai University, Master's student | | |
+| [JasonLLLLLLLLLLL](https://github.com/JasonLLLLLLLLLLL) | SWUFE (Southwestern University of Finance and Economics) | | |
+| [MrCatAI](https://github.com/MrCatAI) | AI Mover | | |
+| [ZeyuBa](https://github.com/ZeyuBa) | Institute of Automation, Master's student | | |
+| [aiyinyuedejustin](https://github.com/aiyinyuedejustin) | University of Pennsylvania, Master's student | | |
+| [Nobody-ML](https://github.com/Nobody-ML) | China University of Petroleum (East China), Undergraduate student | | |
+| [chg0901](https://github.com/chg0901) | [MiniSora](https://github.com/mini-sora/minisora) | Maintainer and Admin of [MiniSora](https://github.com/mini-sora/minisora) | LLM Pre-Training and Fine-Tuning, Model Uploading, Data Cleaning and Docs Translation |
+| [Mxoder](https://github.com/Mxoder) | Beihang University, Undergraduate student | | |
+| [Anooyman](https://github.com/Anooyman) | Nanjing University of Science and Technology, Master's student | | |
+| [Vicky-3021](https://github.com/Vicky-3021) | Xidian University, Master's student (Research Year 0) | | |
+| [SantiagoTOP](https://github.com/santiagoTOP) | Taiyuan University of Technology, Master's student | | |
+| [zealot52099](https://github.com/zealot52099) | Individual developer | | Data Processing, LLM finetuning and RAG |
+| [wwwyfff](https://github.com/wwwyfff) | FuDan University, Master's student | | |
+| [jkhumor](https://github.com/jkhumor) | Nankai University, Master's student | | RAG |
+| [lll997150986](https://github.com/lll997150986) | Nankai University, Master's student | | Fine Tuning |
+| [nln-maker](https://github.com/nln-maker) | Nankai University, Master's student | | Front-end and back-end development |
+| [dream00001](https://github.com/dream00001) | Nankai University, Master's student | | Front-end and back-end development |
+| [王几行XING](zhihu.com/people/brycewang1898) | Peking University, Master's graduate | | Data Processing, LLM finetuning, Front-end and back-end development |
+| [思在] | Peking University, Master's graduate (Microsoft) | | LLM finetuning, Front-end and back-end development |
+
+### Copyright Notice
+
+The project is licensed under the MIT License. Please refer to the details
+ [LICENSE](https://github.com/SmartFlowAI/EmoLLM/blob/master/LICENSE)
+
+### Acknowledgments
+
+- [Sanbu](https://github.com/sanbuphy)
+- [Shanghai Artificial Intelligence Laboratory](https://www.shlab.org.cn/)
+- [Vanin](https://github.com/vansin)
+- [Bloom up (WeChat Official Account Promotion)](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A)
+- Abu (M.A. in Psychology, Peking University)
+- [HatBoy](https://github.com/hatboy)
+
+
+
+
+
+
+
+
+
+## Star History
+
+[![Star History Chart](https://api.star-history.com/svg?repos=SmartFlowAI/EmoLLM&type=Date)](https://star-history.com/#SmartFlowAI/EmoLLM&Date)
+
+## 🌟 Contributors
+
+[![EmoLLM contributors](https://contrib.rocks/image?repo=SmartFlowAI/EmoLLM&max=50)](https://github.com/SmartFlowAI/EmoLLM/graphs/contributors)
+
+[your-project-path]: SmartflowAI/EmoLLM
+[contributors-shield]: https://img.shields.io/github/contributors/SmartflowAI/EmoLLM.svg?style=flat-square
+[contributors-url]: https://github.com/SmartflowAI/EmoLLM/graphs/contributors
+[forks-shield]: https://img.shields.io/github/forks/SmartflowAI/EmoLLM.svg?style=flat-square
+[forks-url]: https://github.com/SmartflowAI/EmoLLM/network/members
+[stars-shield]: https://img.shields.io/github/stars/SmartflowAI/EmoLLM.svg?style=flat-square
+[stars-url]: https://github.com/SmartflowAI/EmoLLM/stargazers
+[issues-shield]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg?style=flat-square
+[issues-url]: https://img.shields.io/github/issues/SmartflowAI/EmoLLM.svg
+[license-shield]: https://img.shields.io/github/license/SmartflowAI/EmoLLM.svg?style=flat-square
+[license-url]: https://github.com/SmartflowAI/EmoLLM/blob/main/LICENSE
+
+[OpenXLab_App-image]: https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg
+[OpenXLab_Model-image]: https://cdn-static.openxlab.org.cn/header/openxlab_models.svg
+[OpenXLab_App-url]: https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0
+[OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full
+
+## Communication group
+
+- If it fails, go to the Issue section.
+
+
+
+
\ No newline at end of file
diff --git a/xtuner_config/README_internlm2_7b_base_qlora.md b/xtuner_config/README_internlm2_7b_base_qlora.md
index 13b8e80..f583b42 100644
--- a/xtuner_config/README_internlm2_7b_base_qlora.md
+++ b/xtuner_config/README_internlm2_7b_base_qlora.md
@@ -2,25 +2,37 @@
## 模型基座与配置文件
-- 本项目在[**internlm2_7b_chat_qlora_e3**模型](./internlm2_7b_chat_qlora_e3.py)微调[指南](./README.md)的基础上,更新了对[**internlm2_7b_base_qlora_e3(配置文件)**](./internlm2_7b_base_qlora_e10_M_1e4_32_64.py)**模型**的微调。
+- 本项目在XTuner项目所提供的[**internlm2_7b_chat_qlora_e3**模型配置文件](./internlm2_7b_chat_qlora_e3.py)和在[EmoLLM模型微调指南](./README.md)的基础上,创建和更新了对**InternLM2_7B_base模型**在[EmoLLM通用数据集](../datasets/README.md)上进行QLoRA微调训练,配置文件详见[**internlm2_7b_base_qlora_e10_M_1e4_32_64.py**](./internlm2_7b_base_qlora_e10_M_1e4_32_64.py)。
+- 为了用户可以根据自己不同的硬件配置进行复现和微调训练,EmoLLM也提供了其他的配置文件以满足不同的配置需求。
+ - [internlm2_7b_base_qlora_e10_b8_16_32.py](./internlm2_7b_base_qlora_e10_b8_16_32.py)
+ - [internlm2_7b_base_qlora_e3_M_1e4_32_64.py](./internlm2_7b_base_qlora_e3_M_1e4_32_64.py)
## 模型公布和训练epoch数设置
-- 由于采用了合并后的数据集,我们对选用的internlm2_7b_base模型进行了**10 epoch**的训练,读者可以根据训练过程中的输出和loss变化,进行训练的终止和模型的挑选,也可以采用更加专业的评估方法,来对模型评测。
+- 由于采用了合并后的数据集,我们对选用的InternLM2_7B_base模型进行了**10 epoch**的训练,读者可以根据训练过程中的输出和loss变化,进行训练的终止和模型的挑选,也可以采用更加专业的评估方法,来对模型评测。
-- 在我们公布的internlm2_7b_base_qlora微调模型时,也分别在OpenXLab和ModelScope中提供了两个不同的权重版本供用户使用和测试,更多专业测评结果将会在近期更新, 敬请期待。
+- 在我们公布的InternLM2_7B_base QLoRA微调模型时,也分别在OpenXLab和ModelScope中提供了两个不同的权重版本供用户使用和测试,更多专业测评结果将会在近期更新,敬请期待。
-- **OpenXLab**:
- - [5 epoch 模型](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base)
- - [10 epoch 模型](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base-10e)
-
-- **ModelScope**:
- - [5 epoch 模型](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base/files)
- - [10 epoch 模型](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base-10e/files)
+ - **OpenXLab**:
+ - [5 epoch 模型](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base)
+ - [10 epoch 模型](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base-10e)
+ - **ModelScope**:
+ - [5 epoch 模型](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base/files)
+ - [10 epoch 模型](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base-10e/files)
+
+- 目前EmoLLM团队已经采用**通用指标**评估了QLoRA微调训练的InternLM2_7B_base模型(包括5 epoch 模型和10 epoch 模型),结果如下表所示,可以看到10 epoch QLoRA微调训练的InternLM2_7B_base模型通用指标已经超过其他模型,我们将近期更新在心理咨询专业指标上的评测结果。更多评测详情请查看[通用测评结果页面(General_evaluation.md)](../evaluate/General_evaluation.md)和[测评目录README](../evaluate/README.md).
+
+| Model | ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 |
+|----------|---------|---------|---------|---------|---------|---------|---------|
+| Qwen1_5-0_5B-chat | 27.23% | 8.55% | 17.05% | 26.65% | 13.11% | 7.19% | 4.05% |
+| InternLM2_7B_chat_qlora | 37.86% | 15.23% | 24.34% | 39.71% | 22.66% | 14.26% | 9.21% |
+| InternLM2_7B_chat_full | 32.45% | 10.82% | 20.17% | 30.48% | 15.67% | 8.84% | 5.02% |
+| InternLM2_7B_base_qlora_5epoch | 41.94% | 20.21% | 29.67% | 42.98% | 27.07% | 19.33% | 14.62% |
+| **InternLM2_7B_base_qlora_10epoch** | **43.47%** | **22.06%** | **31.4%** | **44.81%** | **29.15%** | **21.44%** | **16.72%** |
### 超参数设置
-训练config设置详情,请查看[**internlm2_7b_base_qlora_e3(配置文件)**](./internlm2_7b_base_qlora_e10_M_1e4_32_64.py),这里我们只列出了关键的超参数或者我们做过调整的超参数。
+训练config设置详情,请查看[**`internlm2_7b_base_qlora_e10_M_1e4_32_64.py`(配置文件)**](./internlm2_7b_base_qlora_e10_M_1e4_32_64.py),这里我们只列出了关键的超参数或者我们做过调整的超参数。
```python
prompt_template = PROMPT_TEMPLATE.internlm2_chat