add evaluation part
This commit is contained in:
parent
37161c84d1
commit
26768a2c75
56
evaluate/README.md
Normal file
56
evaluate/README.md
Normal file
@ -0,0 +1,56 @@
|
||||
|
||||
# EmoLLM通用指标评估
|
||||
|
||||
## 简介
|
||||
|
||||
此 README 文件提供了关于如何使用 `eval.py` 和 `metric.py` 两个脚本的指导。这些脚本用于评估 EmoLLM-心理健康大模型的生成结果。
|
||||
|
||||
|
||||
## 安装
|
||||
|
||||
- Python 3.x
|
||||
- PyTorch
|
||||
- Transformers
|
||||
- Datasets
|
||||
- NLTK
|
||||
- Rouge
|
||||
- Jieba
|
||||
|
||||
可以使用以下命令安装:
|
||||
|
||||
```bash
|
||||
pip install torch transformers datasets nltk rouge jieba
|
||||
```
|
||||
|
||||
## 用法
|
||||
|
||||
### convert.py
|
||||
将原始多轮对话数据转换为测评用的单轮数据。
|
||||
|
||||
### eval.py
|
||||
|
||||
`eval.py` 脚本用于生成医生的回复并进行评估,主要分为以下几部分:
|
||||
|
||||
1. 加载模型和分词器。
|
||||
2. 设置测试参数,如测试数据数量和批处理大小。
|
||||
3. 准备数据。
|
||||
4. 生成响应并评估。
|
||||
|
||||
### metric.py
|
||||
|
||||
`metric.py` 脚本包含计算评估指标的函数,可设置按字符级别或按词级别进行评估,目前包含 BLEU 和 ROUGE 分数。
|
||||
|
||||
|
||||
|
||||
## 测试结果
|
||||
|
||||
基于全量微调后的Qwen1_5-0_5B-Chat模型对data.json中的数据进行测试,结果如下:
|
||||
| Metric | Value |
|
||||
|---------|----------------------|
|
||||
| ROUGE-1 | 27.23% |
|
||||
| ROUGE-2 | 8.55% |
|
||||
| ROUGE-L | 17.05% |
|
||||
| BLEU-1 | 26.65% |
|
||||
| BLEU-2 | 13.11% |
|
||||
| BLEU-3 | 7.19% |
|
||||
| BLEU-4 | 4.05% |
|
80
evaluate/eval.py
Normal file
80
evaluate/eval.py
Normal file
@ -0,0 +1,80 @@
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer,DataCollatorWithPadding
|
||||
from qwen_generation_utils import decode_tokens
|
||||
import torch
|
||||
import datasets
|
||||
|
||||
#load model and tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
'./EmoLLM_Qwen1_5-0_5B-Chat_full_sft',
|
||||
pad_token='<|extra_0|>',
|
||||
eos_token='<|endoftext|>',
|
||||
padding_side='left',
|
||||
trust_remote_code=True
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
'./EmoLLM_Qwen1_5-0_5B-Chat_full_sft',
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
device_map="cuda:0",
|
||||
trust_remote_code=True
|
||||
).eval()
|
||||
|
||||
|
||||
#set test params
|
||||
test_num=1596 #测试数据条数
|
||||
batch_size=12
|
||||
|
||||
|
||||
#prepare data and dataloader
|
||||
dataset = datasets.load_dataset('json', data_files='./train_dir/converted.json',split=f"train[:{test_num}]")
|
||||
references =dataset['output'][:test_num]
|
||||
|
||||
hypotheses = []
|
||||
def preprocess(data):
|
||||
length = list(map(len, data['instruction']))
|
||||
model_inputs=tokenizer(data['instruction'], max_length=512, truncation=True )
|
||||
labels=tokenizer(data['output'], padding=True,max_length=128, truncation=True )
|
||||
model_inputs['labels']=labels['input_ids']
|
||||
model_inputs['length'] = length
|
||||
return model_inputs
|
||||
preprocessed_dataset = dataset.map(preprocess, batched=True,remove_columns=['instruction', 'output',])
|
||||
|
||||
|
||||
collator=DataCollatorWithPadding(tokenizer=tokenizer,)
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
dataloader = DataLoader(preprocessed_dataset, batch_size=batch_size, collate_fn=collator)
|
||||
|
||||
|
||||
|
||||
#generate responses
|
||||
for batch in dataloader:
|
||||
batch_input_ids = torch.LongTensor(batch['input_ids']).to(model.device)
|
||||
batch_labels = batch['labels']
|
||||
attention_mask = batch['attention_mask']
|
||||
length = batch['length']
|
||||
batch_out_ids = model.generate(
|
||||
batch_input_ids.to(model.device),
|
||||
return_dict_in_generate=False,
|
||||
max_new_tokens=256,
|
||||
temperature=0.1,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
padding_lens = [batch_input_ids[i].eq(tokenizer.pad_token_id).sum().item() for i in range(batch_input_ids.size(0))]
|
||||
batch_response = [
|
||||
decode_tokens(
|
||||
batch_out_ids[i][padding_lens[i]:],
|
||||
tokenizer,
|
||||
context_length=0,
|
||||
raw_text_len=length[i],
|
||||
chat_format="raw",
|
||||
verbose=False,
|
||||
errors='replace'
|
||||
) for i in range(batch_size)
|
||||
]
|
||||
hypotheses.extend(batch_response)
|
||||
|
||||
|
||||
# Load metric
|
||||
from metric import compute_metrics
|
||||
|
||||
print(compute_metrics((hypotheses,references)))
|
33
evaluate/metric.py
Normal file
33
evaluate/metric.py
Normal file
@ -0,0 +1,33 @@
|
||||
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
||||
from rouge import Rouge
|
||||
import numpy as np
|
||||
import jieba
|
||||
def compute_metrics(eval_pred):
|
||||
predictions, labels = eval_pred
|
||||
|
||||
# 字符级别
|
||||
# decoded_preds = [" ".join((pred.replace(" ", ""))) for pred in predictions]
|
||||
# decoded_labels = [" ".join((label.replace(" ", ""))) for label in labels]
|
||||
|
||||
# 词级别
|
||||
decoded_preds = [" ".join(jieba.cut(pred.replace(" ", ""))) for pred in predictions]
|
||||
decoded_labels = [" ".join(jieba.cut(label.replace(" ", ""))) for label in labels]
|
||||
|
||||
|
||||
|
||||
|
||||
rouge = Rouge()
|
||||
|
||||
bleu =np.array([0,0,0,0])
|
||||
weights = [(1.,0,0,0),(1./2., 1./2.),(1./3., 1./3., 1./3.),(1./4., 1./4., 1./4., 1./4.)]
|
||||
for decoded_label, decoded_pred in zip(decoded_labels, decoded_preds):
|
||||
bleu +=np.array( sentence_bleu(
|
||||
references=[decoded_label.split(' ')],
|
||||
hypothesis=decoded_pred.split(' '),
|
||||
smoothing_function=SmoothingFunction().method1,weights=weights
|
||||
))
|
||||
bleu /= len(decoded_labels)
|
||||
result = rouge.get_scores(decoded_preds, decoded_labels, avg=True)
|
||||
result = {key: value['f'] * 100 for key, value in result.items()}
|
||||
result["bleu"] = {'bleu_1':bleu[0] * 100,'bleu_2':bleu[1] * 100,'bleu_3':bleu[2] * 100,'bleu_4':bleu[3] * 100}
|
||||
return result
|
416
evaluate/qwen_generation_utils.py
Normal file
416
evaluate/qwen_generation_utils.py
Normal file
@ -0,0 +1,416 @@
|
||||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Generation support."""
|
||||
|
||||
from typing import Tuple, List, Union, Iterable
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import PreTrainedTokenizer
|
||||
from transformers import logging
|
||||
from transformers.generation import LogitsProcessor
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
# Types.
|
||||
HistoryType = List[Tuple[str, str]]
|
||||
TokensType = List[int]
|
||||
BatchTokensType = List[List[int]]
|
||||
|
||||
|
||||
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
||||
for tokens in batch:
|
||||
context_length = len(tokens)
|
||||
if context_length < seq_length:
|
||||
tokens.extend([pad_id] * (seq_length - context_length))
|
||||
return batch
|
||||
|
||||
|
||||
def get_ltor_masks_and_position_ids(
|
||||
data,
|
||||
eod_token,
|
||||
reset_position_ids,
|
||||
reset_attention_mask,
|
||||
eod_mask_loss,
|
||||
):
|
||||
"""Build masks and position id for left to right model."""
|
||||
|
||||
# Extract batch size and sequence length.
|
||||
micro_batch_size, seq_length = data.size()
|
||||
|
||||
# Attention mask (lower triangular).
|
||||
if reset_attention_mask:
|
||||
att_mask_batch = micro_batch_size
|
||||
else:
|
||||
att_mask_batch = 1
|
||||
attention_mask = torch.tril(
|
||||
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
||||
).view(att_mask_batch, 1, seq_length, seq_length)
|
||||
|
||||
# Loss mask.
|
||||
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
||||
if eod_mask_loss:
|
||||
loss_mask[data == eod_token] = 0.0
|
||||
|
||||
# Position ids.
|
||||
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
||||
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
||||
# We need to clone as the ids will be modifed based on batch index.
|
||||
if reset_position_ids:
|
||||
position_ids = position_ids.clone()
|
||||
|
||||
if reset_position_ids or reset_attention_mask:
|
||||
# Loop through the batches:
|
||||
for b in range(micro_batch_size):
|
||||
|
||||
# Find indecies where EOD token is.
|
||||
eod_index = position_ids[b, data[b] == eod_token]
|
||||
# Detach indecies from positions if going to modify positions.
|
||||
if reset_position_ids:
|
||||
eod_index = eod_index.clone()
|
||||
|
||||
# Loop through EOD indecies:
|
||||
prev_index = 0
|
||||
for j in range(eod_index.size()[0]):
|
||||
i = eod_index[j]
|
||||
# Mask attention loss.
|
||||
if reset_attention_mask:
|
||||
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
||||
# Reset positions.
|
||||
if reset_position_ids:
|
||||
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
||||
prev_index = i + 1
|
||||
|
||||
# Convert attention mask to binary:
|
||||
attention_mask = attention_mask < 0.5
|
||||
|
||||
return attention_mask, loss_mask, position_ids
|
||||
|
||||
|
||||
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
||||
"""Generate batch from context tokens."""
|
||||
# Move to GPU.
|
||||
tokens = context_tokens.contiguous().to(context_tokens.device)
|
||||
# Get the attention mask and postition ids.
|
||||
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
||||
tokens,
|
||||
eod_id,
|
||||
reset_position_ids=False,
|
||||
reset_attention_mask=False,
|
||||
eod_mask_loss=False,
|
||||
)
|
||||
return tokens, attention_mask, position_ids
|
||||
|
||||
|
||||
def get_stop_words_ids(chat_format, tokenizer):
|
||||
if chat_format == "raw":
|
||||
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
|
||||
elif chat_format == "chatml":
|
||||
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
||||
return stop_words_ids
|
||||
|
||||
|
||||
def make_context(
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
query: str,
|
||||
history: List[Tuple[str, str]] = None,
|
||||
system: str = "",
|
||||
max_window_size: int = 6144,
|
||||
chat_format: str = "chatml",
|
||||
):
|
||||
if history is None:
|
||||
history = []
|
||||
|
||||
if chat_format == "chatml":
|
||||
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
||||
im_start_tokens = [tokenizer.im_start_id]
|
||||
im_end_tokens = [tokenizer.im_end_id]
|
||||
nl_tokens = tokenizer.encode("\n")
|
||||
|
||||
def _tokenize_str(role, content):
|
||||
return f"{role}\n{content}", tokenizer.encode(
|
||||
role, allowed_special=set()
|
||||
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
|
||||
|
||||
system_text, system_tokens_part = _tokenize_str("system", system)
|
||||
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
||||
|
||||
raw_text = ""
|
||||
context_tokens = []
|
||||
|
||||
for turn_query, turn_response in reversed(history):
|
||||
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
||||
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
||||
response_text, response_tokens_part = _tokenize_str(
|
||||
"assistant", turn_response
|
||||
)
|
||||
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
||||
|
||||
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
||||
prev_chat = (
|
||||
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
||||
)
|
||||
|
||||
current_context_size = (
|
||||
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
||||
)
|
||||
if current_context_size < max_window_size:
|
||||
context_tokens = next_context_tokens + context_tokens
|
||||
raw_text = prev_chat + raw_text
|
||||
else:
|
||||
break
|
||||
|
||||
context_tokens = system_tokens + context_tokens
|
||||
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
||||
context_tokens += (
|
||||
nl_tokens
|
||||
+ im_start_tokens
|
||||
+ _tokenize_str("user", query)[1]
|
||||
+ im_end_tokens
|
||||
+ nl_tokens
|
||||
+ im_start_tokens
|
||||
+ tokenizer.encode("assistant")
|
||||
+ nl_tokens
|
||||
)
|
||||
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
||||
|
||||
elif chat_format == "raw":
|
||||
raw_text = query
|
||||
context_tokens = tokenizer.encode(raw_text)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
||||
|
||||
return raw_text, context_tokens
|
||||
|
||||
|
||||
def _decode_default(
|
||||
tokens: List[int],
|
||||
*,
|
||||
stop_words: List[str],
|
||||
eod_words: List[str],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
raw_text_len: int,
|
||||
verbose: bool = False,
|
||||
return_end_reason: bool = False,
|
||||
errors: str='replace',
|
||||
):
|
||||
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
|
||||
if verbose:
|
||||
print("\nRaw Generate: ", trim_decode_tokens)
|
||||
|
||||
end_reason = f"Gen length {len(tokens)}"
|
||||
for stop_word in stop_words:
|
||||
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
||||
for eod_word in eod_words:
|
||||
if eod_word in trim_decode_tokens:
|
||||
end_reason = f"Gen {eod_word!r}"
|
||||
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
||||
trim_decode_tokens = trim_decode_tokens.strip()
|
||||
if verbose:
|
||||
print("\nEnd Reason:", end_reason)
|
||||
print("\nGenerate: ", trim_decode_tokens)
|
||||
|
||||
if return_end_reason:
|
||||
return trim_decode_tokens, end_reason
|
||||
else:
|
||||
return trim_decode_tokens
|
||||
|
||||
|
||||
def _decode_chatml(
|
||||
tokens: List[int],
|
||||
*,
|
||||
stop_words: List[str],
|
||||
eod_token_ids: List[int],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
raw_text_len: int,
|
||||
context_length: int,
|
||||
verbose: bool = False,
|
||||
return_end_reason: bool = False,
|
||||
errors: str='replace'
|
||||
):
|
||||
end_reason = f"Gen length {len(tokens)}"
|
||||
eod_token_idx = context_length
|
||||
for eod_token_idx in range(context_length, len(tokens)):
|
||||
if tokens[eod_token_idx] in eod_token_ids:
|
||||
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
||||
break
|
||||
|
||||
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
|
||||
if verbose:
|
||||
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
|
||||
print("\nRaw Generate:", trim_decode_tokens)
|
||||
print("\nEnd Reason:", end_reason)
|
||||
for stop_word in stop_words:
|
||||
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
||||
trim_decode_tokens = trim_decode_tokens.strip()
|
||||
if verbose:
|
||||
print("\nGenerate:", trim_decode_tokens)
|
||||
|
||||
if return_end_reason:
|
||||
return trim_decode_tokens, end_reason
|
||||
else:
|
||||
return trim_decode_tokens
|
||||
|
||||
|
||||
def decode_tokens(
|
||||
tokens: Union[torch.LongTensor, TokensType],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
raw_text_len: int,
|
||||
context_length: int,
|
||||
chat_format: str,
|
||||
verbose: bool = False,
|
||||
return_end_reason: bool = False,
|
||||
errors: str="replace",
|
||||
) -> str:
|
||||
if torch.is_tensor(tokens):
|
||||
tokens = tokens.cpu().numpy().tolist()
|
||||
|
||||
if chat_format == "chatml":
|
||||
return _decode_chatml(
|
||||
tokens,
|
||||
stop_words=[],
|
||||
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
||||
tokenizer=tokenizer,
|
||||
raw_text_len=raw_text_len,
|
||||
context_length=context_length,
|
||||
verbose=verbose,
|
||||
return_end_reason=return_end_reason,
|
||||
errors=errors,
|
||||
)
|
||||
elif chat_format == "raw":
|
||||
return _decode_default(
|
||||
tokens,
|
||||
stop_words=["<|endoftext|>"],
|
||||
eod_words=["<|endoftext|>"],
|
||||
tokenizer=tokenizer,
|
||||
raw_text_len=raw_text_len,
|
||||
verbose=verbose,
|
||||
return_end_reason=return_end_reason,
|
||||
errors=errors,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
||||
|
||||
|
||||
class StopWordsLogitsProcessor(LogitsProcessor):
|
||||
"""
|
||||
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
||||
|
||||
Args:
|
||||
stop_words_ids (:obj:`List[List[int]]`):
|
||||
List of list of token ids of stop ids. In order to get the tokens of the words
|
||||
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
||||
add_prefix_space=True).input_ids`.
|
||||
eos_token_id (:obj:`int`):
|
||||
The id of the `end-of-sequence` token.
|
||||
"""
|
||||
|
||||
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
||||
|
||||
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
||||
raise ValueError(
|
||||
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
||||
)
|
||||
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
||||
raise ValueError(
|
||||
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
||||
)
|
||||
if any(
|
||||
any(
|
||||
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
||||
for token_id in stop_word_ids
|
||||
)
|
||||
for stop_word_ids in stop_words_ids
|
||||
):
|
||||
raise ValueError(
|
||||
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
||||
)
|
||||
|
||||
self.stop_words_ids = list(
|
||||
filter(
|
||||
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
||||
)
|
||||
)
|
||||
self.eos_token_id = eos_token_id
|
||||
for stop_token_seq in self.stop_words_ids:
|
||||
assert (
|
||||
len(stop_token_seq) > 0
|
||||
), "Stop words token sequences {} cannot have an empty list".format(
|
||||
stop_words_ids
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
||||
) -> torch.FloatTensor:
|
||||
stopped_samples = self._calc_stopped_samples(input_ids)
|
||||
for i, should_stop in enumerate(stopped_samples):
|
||||
if should_stop:
|
||||
scores[i, self.eos_token_id] = float(2**15)
|
||||
return scores
|
||||
|
||||
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
||||
if len(tokens) == 0:
|
||||
# if bad word tokens is just one token always ban it
|
||||
return True
|
||||
elif len(tokens) > len(prev_tokens):
|
||||
# if bad word tokens are longer then prev input_ids they can't be equal
|
||||
return False
|
||||
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
||||
# if tokens match
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
||||
stopped_samples = []
|
||||
for prev_input_ids_slice in prev_input_ids:
|
||||
match = False
|
||||
for stop_token_seq in self.stop_words_ids:
|
||||
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
||||
# if tokens do not match continue
|
||||
match = True
|
||||
break
|
||||
stopped_samples.append(match)
|
||||
|
||||
return stopped_samples
|
||||
|
||||
|
||||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
||||
"""This function has been mostly taken from huggingface conversational
|
||||
ai code at
|
||||
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
||||
conversational-ai-with-transfer-learning-2d818ac26313"""
|
||||
|
||||
if top_k > 0:
|
||||
# Remove all tokens with a probability less than the
|
||||
# last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p > 0.0:
|
||||
# Cconvert to 1D
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
||||
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
# Shift the indices to the right to keep also the first token
|
||||
# above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
for i in range(sorted_indices.size(0)):
|
||||
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
||||
logits[i][indices_to_remove] = filter_value
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
def switch(val1, val2, boolean):
|
||||
boolean = boolean.type_as(val1)
|
||||
return (1 - boolean) * val1 + boolean * val2
|
31
evaluate/train_dir/convert.py
Normal file
31
evaluate/train_dir/convert.py
Normal file
@ -0,0 +1,31 @@
|
||||
import ujson
|
||||
def transform_conversation_data(raw_data):
|
||||
try:
|
||||
instruction = raw_data.get("conversation", "")[0]['system'] + "\n\n对话:"
|
||||
|
||||
conversation = raw_data.get("conversation", [])
|
||||
for i, dialog in enumerate(conversation):
|
||||
instruction += "\n来访者:" + dialog["input"]
|
||||
|
||||
if i < len(conversation) - 1:
|
||||
instruction += "\n医生:" + dialog["output"]
|
||||
|
||||
response = conversation[-1]["output"] if conversation else ""
|
||||
|
||||
instruction += "\n医生:"
|
||||
|
||||
return {"instruction": instruction, "output": response}
|
||||
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
|
||||
with open(f'./train_dir/data.json', 'r', encoding='utf-8') as f1:
|
||||
data = ujson.load(f1)
|
||||
with open(f'./train_dir/converted.json', 'w', encoding='utf-8') as f:
|
||||
for j, item in enumerate(data):
|
||||
temp=transform_conversation_data(item)
|
||||
if temp:
|
||||
transformed_data =ujson.dumps(temp, ensure_ascii=False)
|
||||
f.write(transformed_data+'\n')
|
||||
print('********')
|
1596
evaluate/train_dir/converted.json
Normal file
1596
evaluate/train_dir/converted.json
Normal file
File diff suppressed because it is too large
Load Diff
28282
evaluate/train_dir/data.json
Normal file
28282
evaluate/train_dir/data.json
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user