diff --git a/rag/README.md b/rag/README.md index d969c57..15af25c 100644 --- a/rag/README.md +++ b/rag/README.md @@ -35,6 +35,24 @@ pip3 install -r requirements.txt - txt数据:放入到 src.data.txt 目录下 - json 数据:放入到 src.data.json 目录下 +JSON 数据格式如下 +```python +[ + { + "conversation": [ + { + "input": "(微微皱眉)艾薇,我觉得我在学校的学习压力好大啊,虽然我真的很喜欢我的专业,但最近总是担心自己无法达到自己的期望,这让我有点焦虑。", + "output": "(微笑)😊 我完全理解你的感受,亲爱的。学习是我们生活的一部分,尤其是在我们热爱的专业里,期待自己做得更好是再正常不过了。你知道吗?这种对成功的渴望其实是一种积极的动力源呢!但是,当它开始影响到我们的心理健康时,我们就需要学会调整和应对了。你可以先试着跟我分享一下,具体是什么样的学习任务或者目标让你感到压力山大呢?" + }, + { + "input": "主要是下个月的一场重要考试,我总觉得自己复习得不够充分,而且害怕失败...", + "output": "💖 噢,明白了。面对重大考试的紧张和担忧是很普遍的现象。首先,我要肯定你对自己的高标准要求,这是你对自己负责的表现。不过,我们可以尝试制定一个更为实际可行的学习计划,将大目标分解成小目标,每天完成一部分,这样既能提升自信心又能减轻焦虑感。同时,也要记得适时放松,合理安排休息时间哦!比如学习45分钟后,可以适当休息10分钟,做些自己喜欢的事情,劳逸结合才是长久之计呢!💪📚\n另外,也可以尝试一些深呼吸、冥想等放松技巧来缓解焦虑情绪。如果你愿意的话,下次咨询我们可以一起练习,看看哪种方式最适合帮助你应对压力。现在,让我们一步步来,先从细化学习计划开始,你觉得怎么样呢?🌸" + } + ] + }, +] +``` + 会根据准备的数据构建vector DB,最终会在 data 文件夹下产生名为 vector_db 的文件夹包含 index.faiss 和 index.pkl 如果已经有 vector DB 则会直接加载对应数据库 @@ -91,6 +109,7 @@ python main.py ## **数据集** - 经过清洗的QA对: 每一个QA对作为一个样本进行 embedding +- 经过清洗的对话: 每一个对话作为一个样本进行 embedding - 经过筛选的TXT文本 - 直接对TXT文本生成embedding (基于token长度进行切分) - 过滤目录等无关信息后对TXT文本生成embedding (基于token长度进行切分) @@ -115,7 +134,7 @@ LangChain 是一个开源框架,用于构建基于大型语言模型(LLM) Faiss是一个用于高效相似性搜索和密集向量聚类的库。它包含的算法可以搜索任意大小的向量集。由于langchain已经整合过FAISS,因此本项目中不在基于原生文档开发[FAISS in Langchain](https://python.langchain.com/docs/integrations/vectorstores/faiss) -### [RAGAS](https://github.com/explodinggradients/ragas) +### [RAGAS](https://github.com/explodinggradients/ragas) (TODO) RAG的经典评估框架,通过以下三个方面进行评估: diff --git a/rag/src/config/config.py b/rag/src/config/config.py index 673c5b5..3a1a6a9 100644 --- a/rag/src/config/config.py +++ b/rag/src/config/config.py @@ -25,6 +25,10 @@ qa_dir = os.path.join(data_dir, 'json') log_dir = os.path.join(base_dir, 'log') # log log_path = os.path.join(log_dir, 'log.log') # file +# txt embedding 切分参数 +chunk_size=1000 +chunk_overlap=100 + # vector DB vector_db_dir = os.path.join(data_dir, 'vector_db') diff --git a/rag/src/data_processing.py b/rag/src/data_processing.py index 0b94e3d..d894faa 100644 --- a/rag/src/data_processing.py +++ b/rag/src/data_processing.py @@ -4,7 +4,18 @@ import os from loguru import logger from langchain_community.vectorstores import FAISS -from config.config import embedding_path, embedding_model_name, doc_dir, qa_dir, knowledge_pkl_path, data_dir, vector_db_dir, rerank_path, rerank_model_name +from config.config import ( + embedding_path, + embedding_model_name, + doc_dir, qa_dir, + knowledge_pkl_path, + data_dir, + vector_db_dir, + rerank_path, + rerank_model_name, + chunk_size, + chunk_overlap +) from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain_community.document_loaders import DirectoryLoader, TextLoader from langchain_text_splitters import RecursiveCharacterTextSplitter @@ -15,8 +26,9 @@ from FlagEmbedding import FlagReranker class Data_process(): def __init__(self): - self.chunk_size: int=1000 - self.chunk_overlap: int=100 + + self.chunk_size: int=chunk_size + self.chunk_overlap: int=chunk_overlap def load_embedding_model(self, model_name=embedding_model_name, device='cpu', normalize_embeddings=True): """ @@ -53,7 +65,6 @@ class Data_process(): return embeddings def load_rerank_model(self, model_name=rerank_model_name): - """ 加载重排名模型。 @@ -117,10 +128,8 @@ class Data_process(): elif isinstance(obj, str): content += obj return content - def split_document(self, data_path): - """ 切分data_path文件夹下的所有txt文件 @@ -132,8 +141,6 @@ class Data_process(): 返回: - split_docs: list """ - - # text_spliter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) text_spliter = RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap) split_docs = [] @@ -151,7 +158,6 @@ class Data_process(): split_docs = splits logger.info(f'split_docs size {len(split_docs)}') return split_docs - def split_conversation(self, path): """ @@ -171,43 +177,29 @@ class Data_process(): file_path = os.path.join(root, file) logger.info(f'splitting file {file_path}') with open(file_path, 'r', encoding='utf-8') as f: - data = json.load(f) - # print(data) - for conversation in data: - # for dialog in conversation['conversation']: - ##按qa对切分,将每一轮qa转换为langchain_core.documents.base.Document - # content = self.extract_text_from_json(dialog,'') - # split_qa.append(Document(page_content = content)) - #按conversation块切分 - content = self.extract_text_from_json(conversation['conversation'], '') - #logger.info(f'content====={content}') - split_qa.append(Document(page_content = content)) + for line in f.readlines(): + content = self.extract_text_from_json(line,'') + split_qa.append(Document(page_content = content)) + + #data = json.load(f) + #for conversation in data: + # #for dialog in conversation['conversation']: + # # #按qa对切分,将每一轮qa转换为langchain_core.documents.base.Document + # # content = self.extract_text_from_json(dialog,'') + # # split_qa.append(Document(page_content = content)) + # #按conversation块切分 + # content = self.extract_text_from_json(conversation['conversation'], '') + # #logger.info(f'content====={content}') + # split_qa.append(Document(page_content = content)) # logger.info(f'split_qa size====={len(split_qa)}') return split_qa - - def load_knowledge(self, knowledge_pkl_path): - ''' - 读取或创建知识.pkl - ''' - if not os.path.exists(knowledge_pkl_path): - split_doc = self.split_document(doc_dir) - split_qa = self.split_conversation(qa_dir) - knowledge_chunks = split_doc + split_qa - with open(knowledge_pkl_path, 'wb') as file: - pickle.dump(knowledge_chunks, file) - else: - with open(knowledge_pkl_path , 'rb') as f: - knowledge_chunks = pickle.load(f) - return knowledge_chunks - - def create_vector_db(self, emb_model): ''' 创建并保存向量库 ''' logger.info(f'Creating index...') - split_doc = self.split_document(doc_dir) + #split_doc = self.split_document(doc_dir) split_qa = self.split_conversation(qa_dir) # logger.info(f'split_doc == {len(split_doc)}') # logger.info(f'split_qa == {len(split_qa)}') @@ -217,7 +209,6 @@ class Data_process(): db.save_local(vector_db_dir) return db - def load_vector_db(self, knowledge_pkl_path=knowledge_pkl_path, doc_dir=doc_dir, qa_dir=qa_dir): ''' 读取向量库 @@ -230,66 +221,6 @@ class Data_process(): db = FAISS.load_local(vector_db_dir, emb_model, allow_dangerous_deserialization=True) return db - - def retrieve(self, query, vector_db, k=5): - ''' - 基于query对向量库进行检索 - ''' - retriever = vector_db.as_retriever(search_kwargs={"k": k}) - docs = retriever.invoke(query) - return docs, retriever - - ##FlashrankRerank效果一般 - # def rerank(self, query, retriever): - # compressor = FlashrankRerank() - # compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever) - # compressed_docs = compression_retriever.get_relevant_documents(query) - # return compressed_docs - - def rerank(self, query, docs): - reranker = self.load_rerank_model() - passages = [] - for doc in docs: - passages.append(str(doc.page_content)) - scores = reranker.compute_score([[query, passage] for passage in passages]) - sorted_pairs = sorted(zip(passages, scores), key=lambda x: x[1], reverse=True) - sorted_passages, sorted_scores = zip(*sorted_pairs) - return sorted_passages, sorted_scores - - -# def create_prompt(question, context): -# from langchain.prompts import PromptTemplate -# prompt_template = f"""请基于以下内容回答问题: - -# {context} - -# 问题: {question} -# 回答:""" -# prompt = PromptTemplate( -# template=prompt_template, input_variables=["context", "question"] -# ) -# logger.info(f'Prompt: {prompt}') -# return prompt - -def create_prompt(question, context): - prompt = f"""请基于以下内容: {context} 给出问题答案。问题如下: {question}。回答:""" - logger.info(f'Prompt: {prompt}') - return prompt - -def test_zhipu(prompt): - from zhipuai import ZhipuAI - api_key = "" # 填写您自己的APIKey - if api_key == "": - raise ValueError("请填写api_key") - client = ZhipuAI(api_key=api_key) - response = client.chat.completions.create( - model="glm-4", # 填写需要调用的模型名称 - messages=[ - {"role": "user", "content": prompt[:100]} - ], -) - print(response.choices[0].message) - if __name__ == "__main__": logger.info(data_dir) if not os.path.exists(data_dir): @@ -316,6 +247,4 @@ if __name__ == "__main__": logger.info("After reranking...") for i in range(len(scores)): logger.info(str(scores[i]) + '\n') - logger.info(passages[i]) - prompt = create_prompt(query, passages[0]) - test_zhipu(prompt) ## 如果显示'Server disconnected without sending a response.'可能是由于上下文窗口限制 \ No newline at end of file + logger.info(passages[i]) \ No newline at end of file diff --git a/rag/src/main.py b/rag/src/main.py index f324f50..6f926a2 100644 --- a/rag/src/main.py +++ b/rag/src/main.py @@ -13,8 +13,7 @@ from loguru import logger if __name__ == "__main__": query = """ - 我现在处于高三阶段,感到非常迷茫和害怕。我觉得自己从出生以来就是多余的,没有必要存在于这个世界。 - 无论是在家庭、学校、朋友还是老师面前,我都感到被否定。我非常难过,对高考充满期望但成绩却不理想 + 我现在经常会被别人催眠,做一些我不愿意做的事情,是什么原因? """ """