Add files via upload

allow user to load embedding & rerank models from cache
This commit is contained in:
zealot52099 2024-03-22 20:15:37 +08:00 committed by GitHub
parent 382d338ab3
commit 0aa58372bb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,305 +1,329 @@
import json
import pickle
import faiss
import pickle
import os
from loguru import logger
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import FAISS
from config.config import embedding_path, doc_dir, qa_dir, knowledge_pkl_path, data_dir, base_dir, vector_db_dir
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.document_loaders import DirectoryLoader, TextLoader, JSONLoader
from langchain_text_splitters import CharacterTextSplitter, RecursiveCharacterTextSplitter, RecursiveJsonSplitter
from BCEmbedding import EmbeddingModel, RerankerModel
# from util.pipeline import EmoLLMRAG
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain.document_loaders.pdf import PyPDFDirectoryLoader
from langchain.document_loaders import UnstructuredFileLoader,DirectoryLoader
from langchain_community.llms import Cohere
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import FlashrankRerank
from langchain_core.documents.base import Document
from FlagEmbedding import FlagReranker
class Data_process():
def __init__(self):
self.vector_db_dir = vector_db_dir
self.doc_dir = doc_dir
self.qa_dir = qa_dir
self.knowledge_pkl_path = knowledge_pkl_path
self.chunk_size: int=1000
self.chunk_overlap: int=100
def load_embedding_model(self, model_name="BAAI/bge-small-zh-v1.5", device='cpu', normalize_embeddings=True):
"""
加载嵌入模型
参数:
- model_name: 模型名称字符串类型默认为"BAAI/bge-small-zh-v1.5"
- device: 指定模型加载的设备'cpu' 'cuda'默认为'cpu'
- normalize_embeddings: 是否标准化嵌入向量布尔类型默认为 True
"""
logger.info('Loading embedding model...')
try:
embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs={'device': device},
encode_kwargs={'normalize_embeddings': normalize_embeddings}
)
except Exception as e:
logger.error(f'Failed to load embedding model: {e}')
return None
logger.info('Embedding model loaded.')
return embeddings
def load_rerank_model(self, model_name='BAAI/bge-reranker-large'):
"""
加载重排名模型
参数:
- model_name (str): 模型的名称默认为 'BAAI/bge-reranker-large'
返回:
- FlagReranker 实例
异常:
- ValueError: 如果模型名称不在批准的模型列表中
- Exception: 如果模型加载过程中发生任何其他错误
"""
try:
reranker_model = FlagReranker(model_name, use_fp16=True)
except Exception as e:
logger.error(f'Failed to load rerank model: {e}')
raise
return reranker_model
def extract_text_from_json(self, obj, content=None):
"""
抽取json中的文本用于向量库构建
参数:
- obj: dict,list,str
- content: str
返回:
- content: str
"""
if isinstance(obj, dict):
for key, value in obj.items():
try:
content = self.extract_text_from_json(value, content)
except Exception as e:
print(f"Error processing value: {e}")
elif isinstance(obj, list):
for index, item in enumerate(obj):
try:
content = self.extract_text_from_json(item, content)
except Exception as e:
print(f"Error processing item: {e}")
elif isinstance(obj, str):
content += obj
return content
def split_document(self, data_path, chunk_size=500, chunk_overlap=100):
"""
切分data_path文件夹下的所有txt文件
参数:
- data_path: str
- chunk_size: int
- chunk_overlap: int
返回
- split_docs: list
"""
# text_spliter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
text_spliter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
split_docs = []
logger.info(f'Loading txt files from {data_path}')
if os.path.isdir(data_path):
loader = DirectoryLoader(data_path, glob="**/*.txt",show_progress=True)
docs = loader.load()
split_docs = text_spliter.split_documents(docs)
elif data_path.endswith('.txt'):
file_path = data_path
logger.info(f'splitting file {file_path}')
text_loader = TextLoader(file_path, encoding='utf-8')
text = text_loader.load()
splits = text_spliter.split_documents(text)
split_docs = splits
logger.info(f'split_docs size {len(split_docs)}')
return split_docs
def split_conversation(self, path):
"""
按conversation块切分path文件夹下的所有json文件
##TODO 限制序列长度
"""
# json_spliter = RecursiveJsonSplitter(max_chunk_size=500)
logger.info(f'Loading json files from {path}')
split_qa = []
if os.path.isdir(path):
# loader = DirectoryLoader(path, glob="**/*.json",show_progress=True)
# jsons = loader.load()
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith('.json'):
file_path = os.path.join(root, file)
logger.info(f'splitting file {file_path}')
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
# print(data)
for conversation in data:
# for dialog in conversation['conversation']:
##按qa对切分,将每一轮qa转换为langchain_core.documents.base.Document
# content = self.extract_text_from_json(dialog,'')
# split_qa.append(Document(page_content = content))
#按conversation块切分
content = self.extract_text_from_json(conversation['conversation'], '')
logger.info(f'content====={content}')
split_qa.append(Document(page_content = content))
# logger.info(f'split_qa size====={len(split_qa)}')
return split_qa
def load_knowledge(self, knowledge_pkl_path):
'''
读取或创建知识.pkl
'''
if not os.path.exists(knowledge_pkl_path):
split_doc = self.split_document(doc_dir)
split_qa = self.split_conversation(qa_dir)
knowledge_chunks = split_doc + split_qa
with open(knowledge_pkl_path, 'wb') as file:
pickle.dump(knowledge_chunks, file)
else:
with open(knowledge_pkl_path , 'rb') as f:
knowledge_chunks = pickle.load(f)
return knowledge_chunks
def create_vector_db(self, emb_model):
'''
创建并保存向量库
'''
logger.info(f'Creating index...')
split_doc = self.split_document(self.doc_dir)
split_qa = self.split_conversation(self.qa_dir)
# logger.info(f'split_doc == {len(split_doc)}')
# logger.info(f'split_qa == {len(split_qa)}')
# logger.info(f'split_doc type == {type(split_doc[0])}')
# logger.info(f'split_qa type== {type(split_qa[0])}')
db = FAISS.from_documents(split_doc + split_qa, emb_model)
db.save_local(vector_db_dir)
return db
def load_vector_db(self, knowledge_pkl_path=knowledge_pkl_path, doc_dir=doc_dir, qa_dir=qa_dir):
'''
读取向量库
'''
# current_os = platform.system()
emb_model = self.load_embedding_model()
if not os.path.exists(vector_db_dir) or not os.listdir(vector_db_dir):
db = self.create_vector_db(emb_model)
else:
db = FAISS.load_local(vector_db_dir, emb_model, allow_dangerous_deserialization=True)
return db
def retrieve(self, query, vector_db, k=5):
'''
基于query对向量库进行检索
'''
retriever = vector_db.as_retriever(search_kwargs={"k": k})
docs = retriever.invoke(query)
return docs, retriever
##FlashrankRerank效果一般
# def rerank(self, query, retriever):
# compressor = FlashrankRerank()
# compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever)
# compressed_docs = compression_retriever.get_relevant_documents(query)
# return compressed_docs
def rerank(self, query, docs):
reranker = self.load_rerank_model()
passages = []
for doc in docs:
passages.append(str(doc.page_content))
scores = reranker.compute_score([[query, passage] for passage in passages])
sorted_pairs = sorted(zip(passages, scores), key=lambda x: x[1], reverse=True)
sorted_passages, sorted_scores = zip(*sorted_pairs)
return sorted_passages, sorted_scores
# def create_prompt(question, context):
# from langchain.prompts import PromptTemplate
# prompt_template = f"""请基于以下内容回答问题:
# {context}
# 问题: {question}
# 回答:"""
# prompt = PromptTemplate(
# template=prompt_template, input_variables=["context", "question"]
# )
# logger.info(f'Prompt: {prompt}')
# return prompt
def create_prompt(question, context):
prompt = f"""请基于以下内容: {context} 给出问题答案。问题如下: {question}。回答:"""
logger.info(f'Prompt: {prompt}')
return prompt
def test_zhipu(prompt):
from zhipuai import ZhipuAI
api_key = "" # 填写您自己的APIKey
if api_key == "":
raise ValueError("请填写api_key")
client = ZhipuAI(api_key=api_key)
response = client.chat.completions.create(
model="glm-4", # 填写需要调用的模型名称
messages=[
{"role": "user", "content": prompt[:100]}
],
)
print(response.choices[0].message)
if __name__ == "__main__":
logger.info(data_dir)
if not os.path.exists(data_dir):
os.mkdir(data_dir)
dp = Data_process()
# faiss_index, knowledge_chunks = dp.load_index_and_knowledge(knowledge_pkl_path='')
vector_db = dp.load_vector_db()
# 按照query进行查询
# query = "儿童心理学说明-内容提要-目录 《儿童心理学》1993年修订版说明 《儿童心理学》是1961年初全国高等学校文科教材会议指定朱智贤教授编 写的。1962年初版1979年再版。"
# query = "我现在处于高三阶段,感到非常迷茫和害怕。我觉得自己从出生以来就是多余的,没有必要存在于这个世界。无论是在家庭、学校、朋友还是老师面前,我都感到被否定。我非常难过,对高考充满期望但成绩却不理想,我现在感到非常孤独、累和迷茫。您能给我提供一些建议吗?"
# query = "这在一定程度上限制了其思维能力,特别是辩证 逻辑思维能力的发展。随着年龄的增长,初中三年级学生逐步克服了依赖性"
# query = "我现在处于高三阶段,感到非常迷茫和害怕。我觉得自己从出生以来就是多余的,没有必要存在于这个世界。无论是在家庭、学校、朋友还是老师面前,我都感到被否定。我非常难过,对高考充满期望但成绩却不理想"
query = "我现在心情非常差,有什么解决办法吗?"
docs, retriever = dp.retrieve(query, vector_db, k=10)
logger.info(f'Query: {query}')
logger.info("Retrieve results:")
for i, doc in enumerate(docs):
logger.info(str(i) + '\n')
logger.info(doc)
# print(f'get num of docs:{len(docs)}')
# print(docs)
passages,scores = dp.rerank(query, docs)
logger.info("After reranking...")
for i in range(len(scores)):
logger.info(str(scores[i]) + '\n')
logger.info(passages[i])
prompt = create_prompt(query, passages[0])
import json
import pickle
import faiss
import pickle
import os
from loguru import logger
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import FAISS
from config.config import embedding_path, doc_dir, qa_dir, knowledge_pkl_path, data_dir, vector_db_dir, rerank_path
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.document_loaders import DirectoryLoader, TextLoader, JSONLoader
from langchain_text_splitters import CharacterTextSplitter, RecursiveCharacterTextSplitter, RecursiveJsonSplitter
from BCEmbedding import EmbeddingModel, RerankerModel
# from util.pipeline import EmoLLMRAG
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain.document_loaders.pdf import PyPDFDirectoryLoader
from langchain.document_loaders import UnstructuredFileLoader,DirectoryLoader
from langchain_community.llms import Cohere
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import FlashrankRerank
from langchain_core.documents.base import Document
from FlagEmbedding import FlagReranker
class Data_process():
def __init__(self):
self.chunk_size: int=1000
self.chunk_overlap: int=100
def load_embedding_model(self, model_name='BAAI/bge-small-zh-v1.5', device='cpu', normalize_embeddings=True):
"""
加载嵌入模型
参数:
- model_name: 模型名称字符串类型默认为"BAAI/bge-small-zh-v1.5"
- device: 指定模型加载的设备'cpu' 'cuda'默认为'cpu'
- normalize_embeddings: 是否标准化嵌入向量布尔类型默认为 True
"""
if not os.path.exists(embedding_path):
os.makedirs(embedding_path, exist_ok=True)
embedding_model_path = os.path.join(embedding_path,model_name.split('/')[1] + '.pkl')
logger.info('Loading embedding model...')
if os.path.exists(embedding_model_path):
try:
with open(embedding_model_path , 'rb') as f:
embeddings = pickle.load(f)
logger.info('Embedding model loaded.')
return embeddings
except Exception as e:
logger.error(f'Failed to load embedding model from {embedding_model_path}')
try:
embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs={'device': device},
encode_kwargs={'normalize_embeddings': normalize_embeddings})
logger.info('Embedding model loaded.')
with open(embedding_model_path, 'wb') as file:
pickle.dump(embeddings, file)
except Exception as e:
logger.error(f'Failed to load embedding model: {e}')
return None
return embeddings
def load_rerank_model(self, model_name='BAAI/bge-reranker-large'):
"""
加载重排名模型
参数:
- model_name (str): 模型的名称默认为 'BAAI/bge-reranker-large'
返回:
- FlagReranker 实例
异常:
- ValueError: 如果模型名称不在批准的模型列表中
- Exception: 如果模型加载过程中发生任何其他错误
"""
if not os.path.exists(rerank_path):
os.makedirs(rerank_path, exist_ok=True)
rerank_model_path = os.path.join(rerank_path, model_name.split('/')[1] + '.pkl')
logger.info('Loading rerank model...')
if os.path.exists(rerank_model_path):
try:
with open(rerank_model_path , 'rb') as f:
reranker_model = pickle.load(f)
logger.info('Rerank model loaded.')
return reranker_model
except Exception as e:
logger.error(f'Failed to load embedding model from {rerank_model_path}')
try:
reranker_model = FlagReranker(model_name, use_fp16=True)
logger.info('Rerank model loaded.')
with open(rerank_model_path, 'wb') as file:
pickle.dump(reranker_model, file)
except Exception as e:
logger.error(f'Failed to load rerank model: {e}')
raise
return reranker_model
def extract_text_from_json(self, obj, content=None):
"""
抽取json中的文本用于向量库构建
参数:
- obj: dict,list,str
- content: str
返回:
- content: str
"""
if isinstance(obj, dict):
for key, value in obj.items():
try:
content = self.extract_text_from_json(value, content)
except Exception as e:
print(f"Error processing value: {e}")
elif isinstance(obj, list):
for index, item in enumerate(obj):
try:
content = self.extract_text_from_json(item, content)
except Exception as e:
print(f"Error processing item: {e}")
elif isinstance(obj, str):
content += obj
return content
def split_document(self, data_path, chunk_size=500, chunk_overlap=100):
"""
切分data_path文件夹下的所有txt文件
参数:
- data_path: str
- chunk_size: int
- chunk_overlap: int
返回
- split_docs: list
"""
# text_spliter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
text_spliter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
split_docs = []
logger.info(f'Loading txt files from {data_path}')
if os.path.isdir(data_path):
loader = DirectoryLoader(data_path, glob="**/*.txt",show_progress=True)
docs = loader.load()
split_docs = text_spliter.split_documents(docs)
elif data_path.endswith('.txt'):
file_path = data_path
logger.info(f'splitting file {file_path}')
text_loader = TextLoader(file_path, encoding='utf-8')
text = text_loader.load()
splits = text_spliter.split_documents(text)
split_docs = splits
logger.info(f'split_docs size {len(split_docs)}')
return split_docs
def split_conversation(self, path):
"""
按conversation块切分path文件夹下的所有json文件
##TODO 限制序列长度
"""
# json_spliter = RecursiveJsonSplitter(max_chunk_size=500)
logger.info(f'Loading json files from {path}')
split_qa = []
if os.path.isdir(path):
# loader = DirectoryLoader(path, glob="**/*.json",show_progress=True)
# jsons = loader.load()
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith('.json'):
file_path = os.path.join(root, file)
logger.info(f'splitting file {file_path}')
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
# print(data)
for conversation in data:
# for dialog in conversation['conversation']:
##按qa对切分,将每一轮qa转换为langchain_core.documents.base.Document
# content = self.extract_text_from_json(dialog,'')
# split_qa.append(Document(page_content = content))
#按conversation块切分
content = self.extract_text_from_json(conversation['conversation'], '')
logger.info(f'content====={content}')
split_qa.append(Document(page_content = content))
# logger.info(f'split_qa size====={len(split_qa)}')
return split_qa
def load_knowledge(self, knowledge_pkl_path):
'''
读取或创建知识.pkl
'''
if not os.path.exists(knowledge_pkl_path):
split_doc = self.split_document(doc_dir)
split_qa = self.split_conversation(qa_dir)
knowledge_chunks = split_doc + split_qa
with open(knowledge_pkl_path, 'wb') as file:
pickle.dump(knowledge_chunks, file)
else:
with open(knowledge_pkl_path , 'rb') as f:
knowledge_chunks = pickle.load(f)
return knowledge_chunks
def create_vector_db(self, emb_model):
'''
创建并保存向量库
'''
logger.info(f'Creating index...')
split_doc = self.split_document(doc_dir)
split_qa = self.split_conversation(qa_dir)
# logger.info(f'split_doc == {len(split_doc)}')
# logger.info(f'split_qa == {len(split_qa)}')
# logger.info(f'split_doc type == {type(split_doc[0])}')
# logger.info(f'split_qa type== {type(split_qa[0])}')
db = FAISS.from_documents(split_doc + split_qa, emb_model)
db.save_local(vector_db_dir)
return db
def load_vector_db(self, knowledge_pkl_path=knowledge_pkl_path, doc_dir=doc_dir, qa_dir=qa_dir):
'''
读取向量库
'''
# current_os = platform.system()
emb_model = self.load_embedding_model()
if not os.path.exists(vector_db_dir) or not os.listdir(vector_db_dir):
db = self.create_vector_db(emb_model)
else:
db = FAISS.load_local(vector_db_dir, emb_model, allow_dangerous_deserialization=True)
return db
def retrieve(self, query, vector_db, k=5):
'''
基于query对向量库进行检索
'''
retriever = vector_db.as_retriever(search_kwargs={"k": k})
docs = retriever.invoke(query)
return docs, retriever
##FlashrankRerank效果一般
# def rerank(self, query, retriever):
# compressor = FlashrankRerank()
# compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever)
# compressed_docs = compression_retriever.get_relevant_documents(query)
# return compressed_docs
def rerank(self, query, docs):
reranker = self.load_rerank_model()
passages = []
for doc in docs:
passages.append(str(doc.page_content))
scores = reranker.compute_score([[query, passage] for passage in passages])
sorted_pairs = sorted(zip(passages, scores), key=lambda x: x[1], reverse=True)
sorted_passages, sorted_scores = zip(*sorted_pairs)
return sorted_passages, sorted_scores
# def create_prompt(question, context):
# from langchain.prompts import PromptTemplate
# prompt_template = f"""请基于以下内容回答问题:
# {context}
# 问题: {question}
# 回答:"""
# prompt = PromptTemplate(
# template=prompt_template, input_variables=["context", "question"]
# )
# logger.info(f'Prompt: {prompt}')
# return prompt
def create_prompt(question, context):
prompt = f"""请基于以下内容: {context} 给出问题答案。问题如下: {question}。回答:"""
logger.info(f'Prompt: {prompt}')
return prompt
def test_zhipu(prompt):
from zhipuai import ZhipuAI
api_key = "" # 填写您自己的APIKey
if api_key == "":
raise ValueError("请填写api_key")
client = ZhipuAI(api_key=api_key)
response = client.chat.completions.create(
model="glm-4", # 填写需要调用的模型名称
messages=[
{"role": "user", "content": prompt[:100]}
],
)
print(response.choices[0].message)
if __name__ == "__main__":
logger.info(data_dir)
if not os.path.exists(data_dir):
os.mkdir(data_dir)
dp = Data_process()
# faiss_index, knowledge_chunks = dp.load_index_and_knowledge(knowledge_pkl_path='')
vector_db = dp.load_vector_db()
# 按照query进行查询
# query = "儿童心理学说明-内容提要-目录 《儿童心理学》1993年修订版说明 《儿童心理学》是1961年初全国高等学校文科教材会议指定朱智贤教授编 写的。1962年初版1979年再版。"
# query = "我现在处于高三阶段,感到非常迷茫和害怕。我觉得自己从出生以来就是多余的,没有必要存在于这个世界。无论是在家庭、学校、朋友还是老师面前,我都感到被否定。我非常难过,对高考充满期望但成绩却不理想,我现在感到非常孤独、累和迷茫。您能给我提供一些建议吗?"
# query = "这在一定程度上限制了其思维能力,特别是辩证 逻辑思维能力的发展。随着年龄的增长,初中三年级学生逐步克服了依赖性"
# query = "我现在处于高三阶段,感到非常迷茫和害怕。我觉得自己从出生以来就是多余的,没有必要存在于这个世界。无论是在家庭、学校、朋友还是老师面前,我都感到被否定。我非常难过,对高考充满期望但成绩却不理想"
# query = "我现在心情非常差,有什么解决办法吗?"
query = "我最近总感觉胸口很闷,但医生检查过说身体没问题。可我就是觉得喘不过气来,尤其是看到那些旧照片,想起过去的日子"
docs, retriever = dp.retrieve(query, vector_db, k=10)
logger.info(f'Query: {query}')
logger.info("Retrieve results:")
for i, doc in enumerate(docs):
logger.info(str(i) + '\n')
logger.info(doc)
# print(f'get num of docs:{len(docs)}')
# print(docs)
passages,scores = dp.rerank(query, docs)
logger.info("After reranking...")
for i in range(len(scores)):
logger.info(str(scores[i]) + '\n')
logger.info(passages[i])
prompt = create_prompt(query, passages[0])
test_zhipu(prompt) ## 如果显示'Server disconnected without sending a response.'可能是由于上下文窗口限制