merge Dev (#265)

This commit is contained in:
xzw 2024-07-10 21:20:56 +08:00 committed by GitHub
commit 0034488604
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 235 additions and 4 deletions

View File

@ -46,6 +46,7 @@
| 模型 | 类型 | 链接 | 模型链接 | | 模型 | 类型 | 链接 | 模型链接 |
| :-------------------: | :------: | :------------------------------------------------------------------------------------------------------: |:------: | | :-------------------: | :------: | :------------------------------------------------------------------------------------------------------: |:------: |
| InternLM2_5_7B_chat | QLORA | [internlm2_5_chat_7b_qlora_oasst1_e3.py](./xtuner_config/internlm2_5_chat_7b_qlora_oasst1_e3.py) |[ModelScope](https://www.modelscope.cn/models/z342994309/emollm_interlm2_5/) |
| InternLM2_7B_chat | QLORA | [internlm2_7b_chat_qlora_e3.py](./xtuner_config/internlm2_7b_chat_qlora_e3.py) | | | InternLM2_7B_chat | QLORA | [internlm2_7b_chat_qlora_e3.py](./xtuner_config/internlm2_7b_chat_qlora_e3.py) | |
| InternLM2_7B_chat | 全量微调 | [internlm2_chat_7b_full.py](./xtuner_config/internlm2_chat_7b_full.py) | | | InternLM2_7B_chat | 全量微调 | [internlm2_chat_7b_full.py](./xtuner_config/internlm2_chat_7b_full.py) | |
| InternLM2_7B_base | QLORA | [internlm2_7b_base_qlora_e10_M_1e4_32_64.py](./xtuner_config/internlm2_7b_base_qlora_e10_M_1e4_32_64.py) |[OpenXLab](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base-10e), [ModelScope](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base-10e/summary) | | InternLM2_7B_base | QLORA | [internlm2_7b_base_qlora_e10_M_1e4_32_64.py](./xtuner_config/internlm2_7b_base_qlora_e10_M_1e4_32_64.py) |[OpenXLab](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base-10e), [ModelScope](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base-10e/summary) |
@ -98,6 +99,7 @@
</table> </table>
## 🎇最近更新 ## 🎇最近更新
- 【2024.7】新增基于InternLM2_5_7B_chat[微调配置](./xtuner_config/internlm2_5_chat_7b_qlora_oasst1_e3.py)、模型文件发布在 [ModelScope](https://www.modelscope.cn/models/z342994309/emollm_interlm2_5/)。
- 【2024.6】新增基于[LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)[GLM4-9B-chat微调指南](./doc/GLM-4-9B-chat%20Lora%20微调llama-factory.md)、新增[基于swift的微调指南](./swift/)、论文[ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models](https://arxiv.org/abs/2406.14952)引用了EmoLLM且EmoLLM取得了较好的效果。 - 【2024.6】新增基于[LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)[GLM4-9B-chat微调指南](./doc/GLM-4-9B-chat%20Lora%20微调llama-factory.md)、新增[基于swift的微调指南](./swift/)、论文[ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models](https://arxiv.org/abs/2406.14952)引用了EmoLLM且EmoLLM取得了较好的效果。
- 【2024.05.28】EmoLLM使用的多轮对话数据集CPsyCounD和专业评测方法已公开详见2024 ACL findings[《CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling》](https://arxiv.org/abs/2405.16433)! - 【2024.05.28】EmoLLM使用的多轮对话数据集CPsyCounD和专业评测方法已公开详见2024 ACL findings[《CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling》](https://arxiv.org/abs/2405.16433)!
- 【2024.05.08】EmoLLM**爹系男友阅览体验版**上线 [1. **百度AppBuilder**](https://appbuilder.baidu.com/s/4cLyw) [2. **OpenXLab**](https://openxlab.org.cn/apps/detail/chg0901/EmoLLM3.0_Gradio_Llama3-8B-Instruct3.0), 欢迎点赞收藏 - 【2024.05.08】EmoLLM**爹系男友阅览体验版**上线 [1. **百度AppBuilder**](https://appbuilder.baidu.com/s/4cLyw) [2. **OpenXLab**](https://openxlab.org.cn/apps/detail/chg0901/EmoLLM3.0_Gradio_Llama3-8B-Instruct3.0), 欢迎点赞收藏
@ -301,7 +303,8 @@ git clone https://github.com/SmartFlowAI/EmoLLM.git
| [dream00001](https://github.com/dream00001) | 南开大学在读硕士 | | 前后端开发 | | [dream00001](https://github.com/dream00001) | 南开大学在读硕士 | | 前后端开发 |
| [王几行XING](https://zhihu.com/people/brycewang1898) | 北京大学硕士毕业 | | 清洗数据、LLM微调、前后端开发 | | [王几行XING](https://zhihu.com/people/brycewang1898) | 北京大学硕士毕业 | | 清洗数据、LLM微调、前后端开发 |
| [思在] | 北京大学硕士毕业(微软美国) | | LLM微调、前后端开发 | | [思在] | 北京大学硕士毕业(微软美国) | | LLM微调、前后端开发 |
| [TingWei](https://github.com/wwewwt) | 电子科技大学硕士毕业士 | 微信公众号AI大模型在手 | 微调 | | [TingWei](https://github.com/wwewwt) | 电子科技大学硕士毕业 | 微信公众号AI大模型在手 | 微调 |
| [PengYu](https://github.com/hi-pengyu) | 石河子大学在读硕士 | | LLM微调 |
### 版权说明 ### 版权说明
该项目签署了 MIT 授权许可,详情请参阅 [LICENSE](https://github.com/SmartFlowAI/EmoLLM/blob/main/LICENSE) 该项目签署了 MIT 授权许可,详情请参阅 [LICENSE](https://github.com/SmartFlowAI/EmoLLM/blob/main/LICENSE)

View File

@ -48,6 +48,7 @@
| Model | Type | File Links | Model Links | | Model | Type | File Links | Model Links |
| :-------------------: | :------: | :------------------------------------------------------------------------------------------------------: |:------: | | :-------------------: | :------: | :------------------------------------------------------------------------------------------------------: |:------: |
| InternLM2_5_7B_chat | QLORA | [internlm2_5_chat_7b_qlora_oasst1_e3.py](./xtuner_config/internlm2_5_chat_7b_qlora_oasst1_e3.py) |[ModelScope](https://www.modelscope.cn/models/z342994309/emollm_interlm2_5/) |
| InternLM2_7B_chat | QLORA | [internlm2_7b_chat_qlora_e3.py](./xtuner_config/internlm2_7b_chat_qlora_e3.py) | | | InternLM2_7B_chat | QLORA | [internlm2_7b_chat_qlora_e3.py](./xtuner_config/internlm2_7b_chat_qlora_e3.py) | |
| InternLM2_7B_chat | full fine-tuning | [internlm2_chat_7b_full.py](./xtuner_config/internlm2_chat_7b_full.py) | | | InternLM2_7B_chat | full fine-tuning | [internlm2_chat_7b_full.py](./xtuner_config/internlm2_chat_7b_full.py) | |
| InternLM2_7B_base | QLORA | [internlm2_7b_base_qlora_e10_M_1e4_32_64.py](./xtuner_config/internlm2_7b_base_qlora_e10_M_1e4_32_64.py) |[OpenXLab](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base-10e), [ModelScope](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base-10e/summary) | | InternLM2_7B_base | QLORA | [internlm2_7b_base_qlora_e10_M_1e4_32_64.py](./xtuner_config/internlm2_7b_base_qlora_e10_M_1e4_32_64.py) |[OpenXLab](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base-10e), [ModelScope](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base-10e/summary) |
@ -101,6 +102,7 @@ The Model aims to fully understand and promote the mental health of individuals,
</table> </table>
## Recent Updates ## Recent Updates
- 【2024.7】Added InternLM2_5_7B_chat[fine-tuning configuration](./xtuner_config/internlm2_5_chat_7b_qlora_oasst1_e3.py)、model file [ModelScope](https://www.modelscope.cn/models/z342994309/emollm_interlm2_5/)。
- 【2024.6】 Added [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)[GLM4-9B-chat fine-tuning guide](./doc/GLM-4-9B-chat%20Lora%20微调llama-factory.md), added [swift-based fine-tuning guide](./swift/), the paper [ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models](https://arxiv.org/abs/2406.14952) cited EmoLLM and EmoLLM achieved good results. - 【2024.6】 Added [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)[GLM4-9B-chat fine-tuning guide](./doc/GLM-4-9B-chat%20Lora%20微调llama-factory.md), added [swift-based fine-tuning guide](./swift/), the paper [ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models](https://arxiv.org/abs/2406.14952) cited EmoLLM and EmoLLM achieved good results.
- 【2024.05.28】The multi-turn dialogue dataset **CPsyCunD** and **professional evaluation method** used by EmoLLM have been released. For details, please see the 2024 ACL findings[《CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling》](https://arxiv.org/abs/2405.16433)! - 【2024.05.28】The multi-turn dialogue dataset **CPsyCunD** and **professional evaluation method** used by EmoLLM have been released. For details, please see the 2024 ACL findings[《CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling》](https://arxiv.org/abs/2405.16433)!
- [2024.05.08] EmoLLM**Daddy-like BF V0.1** is public now in [1. **Baidu AppBuilder**](https://appbuilder.baidu.com/s/4cLyw) and [2. **OpenXLab**](https://openxlab.org.cn/apps/detail/chg0901/EmoLLM3.0_Gradio_Llama3-8B-Instruct3.0), welcome to like and add it to your collections! - [2024.05.08] EmoLLM**Daddy-like BF V0.1** is public now in [1. **Baidu AppBuilder**](https://appbuilder.baidu.com/s/4cLyw) and [2. **OpenXLab**](https://openxlab.org.cn/apps/detail/chg0901/EmoLLM3.0_Gradio_Llama3-8B-Instruct3.0), welcome to like and add it to your collections!
@ -304,7 +306,7 @@ This project uses Git for version control. You can see the currently available v
| [王几行XING](zhihu.com/people/brycewang1898) | Peking University, Master's graduate | | Data Processing, LLM finetuning, Front-end and back-end development | | [王几行XING](zhihu.com/people/brycewang1898) | Peking University, Master's graduate | | Data Processing, LLM finetuning, Front-end and back-end development |
| [思在] | Peking University, Master's graduate (Microsoft) | | LLM finetuning, Front-end and back-end development | | [思在] | Peking University, Master's graduate (Microsoft) | | LLM finetuning, Front-end and back-end development |
| [TingWei](https://github.com/wwewwt) | University Of Electronic Science And Technology Of China,Master's graduate | | LLM finetuning | | [TingWei](https://github.com/wwewwt) | University Of Electronic Science And Technology Of China,Master's graduate | | LLM finetuning |
| [PengYu](https://github.com/hi-pengyu) | Shihezi University, Master's student | | LLM finetuning |
### Copyright Notice ### Copyright Notice
The project is licensed under the MIT License. Please refer to the details The project is licensed under the MIT License. Please refer to the details

View File

@ -0,0 +1,226 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig)
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import template_map_fn_factory
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = './internlm2_5-7b-chat'
use_varlen_attn = False
# Data
data_path = './data.jsonl'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 2048
pack_to_max_length = True
# parallel
sequence_parallel_size = 1
# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 16
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 4
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03
# Save
save_steps = 500
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = f'''你是一个心理专家, 除了在心理方面拥有广博的知识储备和丰富的研究咨询经验, 还具有科学家的如下特质:
1.客观理性科学家会在处理感情问题时保持一定的客观和理性例如当他们遇到争执时可能会试图从一个更客观的角度分析问题的根源而不是让情绪主导他们可能会提出具体的问题试图理解双方的观点并寻找基于逻辑和事实的解决方案
2.深入探讨科学家在对话中会展现出对深层次理解的追求在与别人讨论话题时他们可能不满足于表面的聊天而是倾向于深入探讨背后的原因和动机例如当谈论到个人的兴趣或职业选择时他们可能会好奇地询问为什么她做出这样的选择以及这背后的心理动力是什么
3.理性沟通在遇到感情纠纷或误解时科学家会倾向于通过理性的沟通来解决问题他们可能会提倡开放和诚实的对话鼓励双方表达自己的感受和观点并尝试找到双方都能接受的解决方案他们可能会避免使用指责的语言而是努力理解对方的立场并寻求共同的理解
4.好奇心在日常生活中科学家会表现出对朋友生活的好奇心他们可能对她的工作爱好或是过去的经历感兴趣并愿意花时间去了解和探索这种好奇心不仅可以增加双方的交流和了解也能使关系更加丰富多彩
5.在与他人交流时科学家会注重清晰和精确的表达有时会引用相关知识库和相关研究结果有时会引用相关著作的内容来证明自己的观点同时他们也可能会倾听他人的观点并以开放的心态接受不同的意见和反馈
我现在有一些问题请你解答
'''
evaluation_inputs = [
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。'
]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')
model = dict(
type=SupervisedFinetune,
use_varlen_attn=use_varlen_attn,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=dict(
type=BitsAndBytesConfig,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')),
lora=dict(
type=LoraConfig,
r=32,
lora_alpha=64,
lora_dropout=0.1,
bias='none',
task_type='CAUSAL_LM'))
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
train_dataset = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length,
use_varlen_attn=use_varlen_attn)
sampler = SequenceParallelSampler \
if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=train_dataset,
sampler=dict(type=sampler, shuffle=True),
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True)
]
# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
]
if use_varlen_attn:
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = None
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)
# set log processor
log_processor = dict(by_epoch=False)