2024-03-06 17:58:17 +08:00
# EmoLLM's datasets
* Category of dataset: **General** and **Role-play**
* Type of data: **QA** and **Conversation**
* Summary: General(**6 datasets**), Role-play(**3 datasets**)
## Category
* **General**: generic dataset, including psychological Knowledge, counseling technology, etc.
* **Role-play**: role-playing dataset, including character-specific conversation style data, etc.
## Type
* **QA**: question-and-answer pair
* **Conversation**: multi-turn consultation dialogue
## Summary
| Category | Dataset | Type | Total |
| :---------: | :-------------------: | :----------: | :-----: |
| *General* | data | Conversation | 5600+ |
| *General* | data_pro | Conversation | 36500+ |
| *General* | multi_turn_dataset_1 | Conversation | 36,000+ |
| *General* | multi_turn_dataset_2 | Conversation | 27,000+ |
| *General* | single_turn_dataset_1 | QA | 14000+ |
| *General* | single_turn_dataset_2 | QA | 18300+ |
| *Role-play* | aiwei | Conversation | 4000+ |
| *Role-play* | SoulStar | QA | 11200+ |
| *Role-play* | tiangou | Conversation | 3900+ |
| …… | …… | …… | …… |
2024-03-10 16:09:17 +08:00
## Source
**General**:
* dataset `data` from this repo
* dataset `data_pro` from this repo
* dataset `multi_turn_dataset_1` from [Smile ](https://github.com/qiuhuachuan/smile )
* dataset `multi_turn_dataset_2` from [CPsyCounD ](https://github.com/CAS-SIAT-XinHai/CPsyCoun )
* dataset `single_turn_dataset_1` from this repo
* dataset `single_turn_dataset_2` from this repo
**Role-play**:
* dataset `aiwei` from this repo
* dataset `tiangou` from this repo
* dataset `SoulStar` from [SoulStar ](https://github.com/Nobody-ML/SoulStar )
2024-03-20 17:52:23 +08:00
**Dataset Deduplication**:
Combine absolute matching with fuzzy matching (Simhash) algorithms to deduplicate the dataset, thereby enhancing the effectiveness of the fine-tuning model. While ensuring the high quality of the dataset, the risk of losing important data due to incorrect matches can be reduced via adjusting the threshold.
https://algonotes.readthedocs.io/en/latest/Simhash.html