24 lines
1.1 KiB
Python
24 lines
1.1 KiB
Python
|
import torch
|
|||
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|||
|
|
|||
|
|
|||
|
model_name_or_path = "./model"
|
|||
|
|
|||
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
|||
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
|
|||
|
model = model.eval()
|
|||
|
|
|||
|
system_prompt = "你是一个由aJupyter、Farewell、jujimeizuo、Smiling&Weeping研发(排名按字母顺序排序,不分先后)、散步提供技术支持、上海人工智能实验室提供支持开发的心理健康大模型。现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。"
|
|||
|
|
|||
|
messages = [(system_prompt, '')]
|
|||
|
|
|||
|
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
|
|||
|
|
|||
|
while True:
|
|||
|
input_text = input("User >>> ")
|
|||
|
input_text.replace(' ', '')
|
|||
|
if input_text == "exit":
|
|||
|
break
|
|||
|
response, history = model.chat(tokenizer, input_text, history=messages)
|
|||
|
messages.append((input_text, response))
|
|||
|
print(f"robot >>> {response}")
|