286 lines
8.9 KiB
Markdown
286 lines
8.9 KiB
Markdown
|
# GLM4-9B-chat Lora 微调.
|
|||
|
|
|||
|
介绍如何基于 llama-factory 框架,对 glm-4-9b-chat 模型进行 Lora 微调。Lora 是一种高效微调方法,深入了解其原理可参见博客:[知乎|深入浅出 Lora](https://zhuanlan.zhihu.com/p/650197598)。
|
|||
|
|
|||
|
## 一、环境准备
|
|||
|
我们实践了两种平台进行选择
|
|||
|
* 在[autodl](https://www.autodl.com/)平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择`PyTorch`-->`2.0.0`-->`3.8(ubuntu20.04)`-->`11.8`
|
|||
|
![autodl](../xtuner_config/images/autodl.png)
|
|||
|
|
|||
|
|
|||
|
* 在 [InternStudio](https://studio.intern-ai.org.cn/) 平台中选择 A100(1/4) 的配置,如下图所示镜像选择 `Cuda11.7-conda`,如下图所示:
|
|||
|
![internstudio](../xtuner_config/images/internstudio.png)
|
|||
|
在Terminal中,进行pip换源和安装依赖包
|
|||
|
|
|||
|
## 环境配置
|
|||
|
|
|||
|
在完成基本环境配置和本地模型部署的情况下,你还需要安装一些第三方库,可以使用以下命令:
|
|||
|
|
|||
|
```bash
|
|||
|
python -m pip install --upgrade pip
|
|||
|
# 更换 pypi 源加速库的安装
|
|||
|
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
|
|||
|
|
|||
|
# 安装 LLaMA-Factory
|
|||
|
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
|
|||
|
cd LLaMA-Factory
|
|||
|
pip install -e ".[torch,metrics]"
|
|||
|
#上面这步操作会完成torch、transformers、datasets等相关依赖包的安装
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
## 二、模型下载
|
|||
|
|
|||
|
使用 `modelscope` 中的`snapshot_download`函数下载模型,第一个参数为模型名称,参数`cache_dir`为模型的下载路径。
|
|||
|
|
|||
|
在 `/root/autodl-tmp` 路径下新建 `download.py` 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 `python /root/autodl-tmp/download.py`执行下载,模型大小为 14 GB,下载模型大概需要 10~20 分钟
|
|||
|
|
|||
|
```python
|
|||
|
import torch
|
|||
|
from modelscope import snapshot_download, AutoModel, AutoTokenizer
|
|||
|
import os
|
|||
|
model_dir = snapshot_download('ZhipuAI/glm-4-9b-chat', cache_dir='/root/autodl-tmp', revision='master')
|
|||
|
```
|
|||
|
|
|||
|
## 三、指令集构建 —— Alpaca 格式
|
|||
|
|
|||
|
LLaMA-Factory 支持 alpaca 格式和 sharegpt 格式的数据集,本次微调我们使用 alpaca 格式
|
|||
|
|
|||
|
### 指令监督微调数据格式说明
|
|||
|
|
|||
|
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
|
|||
|
|
|||
|
如果指定,`system` 列对应的内容将被作为系统提示词。
|
|||
|
|
|||
|
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮对话的指令和回答。注意在指令监督微调时,历史消息中的回答内容**也会被用于模型学习**。
|
|||
|
|
|||
|
```json
|
|||
|
[
|
|||
|
{
|
|||
|
"instruction": "人类指令(必填)",
|
|||
|
"input": "人类输入(选填)",
|
|||
|
"output": "模型回答(必填)",
|
|||
|
"system": "系统提示词(选填)",
|
|||
|
"history": [
|
|||
|
["第一轮指令(选填)", "第一轮回答(选填)"],
|
|||
|
["第二轮指令(选填)", "第二轮回答(选填)"]
|
|||
|
]
|
|||
|
}
|
|||
|
]
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
### 单轮对话数据的格式转换
|
|||
|
使用以下程序将[数据集](../datasets/)转换成 alpaca 格式
|
|||
|
```python
|
|||
|
import json
|
|||
|
import re
|
|||
|
|
|||
|
# 选择要格式转换的数据集
|
|||
|
file_name = "single_turn_dataset_1.json"
|
|||
|
#file_name = "single_turn_dataset_2.json"
|
|||
|
|
|||
|
system_prompt = "如果要添加系统提示词,请放在这里"
|
|||
|
|
|||
|
with open(f'../{file_name}', 'rt', encoding='utf-8') as file:
|
|||
|
data = json.load(file)
|
|||
|
|
|||
|
converted_data = [{"instruction": item["prompt"],
|
|||
|
"input": "",
|
|||
|
"output": item["completion"],
|
|||
|
"system": system_prompt
|
|||
|
} for item in data]
|
|||
|
|
|||
|
for i in range(len(converted_data)):
|
|||
|
|
|||
|
# 数据清洗-去掉特殊符号
|
|||
|
if "🐳" in converted_data[i]["output"]:
|
|||
|
converted_data[i]["output"] = converted_data[i]["output"].replace("🐳", "")
|
|||
|
|
|||
|
# 数据清洗-去掉“你好,我是红烧肉”,会影响大模型的自我认知
|
|||
|
if '好,我是' in converted_data[i]["output"]:
|
|||
|
converted_data[i]["output"] = converted_data[i]["output"].strip()
|
|||
|
intro_pattern = r"^[^\n]+\n"
|
|||
|
converted_data[i]["output"] = re.sub(intro_pattern, "", converted_data[i]["output"]).strip()
|
|||
|
|
|||
|
with open(f'./processed/{file_name}', 'w', encoding='utf-8') as f:
|
|||
|
json.dump(converted_data, f, ensure_ascii=False, indent=4)
|
|||
|
print(f'./processed/{file_name} Done')
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
### 多轮对话数据的格式转换
|
|||
|
使用以下程序将[数据集](../datasets/)转换成 alpaca 格式
|
|||
|
```python
|
|||
|
from tqdm import tqdm
|
|||
|
import json
|
|||
|
|
|||
|
# 选择要格式转换的数据集
|
|||
|
file_name = "data.json"
|
|||
|
#file_name = "data_pro.json"
|
|||
|
#file_name = "multi_turn_dataset_1.json"
|
|||
|
#file_name = "multi_turn_dataset_2.json"
|
|||
|
#file_name = "aiwei.json"
|
|||
|
|
|||
|
system_prompt = "如果要添加系统提示词,请放在这里"
|
|||
|
|
|||
|
with open(f'../{file_name}', 'rt', encoding='utf-8') as file:
|
|||
|
data = json.load(file)
|
|||
|
|
|||
|
# 遍历原始数据,进行格式转换
|
|||
|
|
|||
|
# 转换后的数据格式
|
|||
|
converted_data = []
|
|||
|
for item in tqdm(data):
|
|||
|
conversation = item['conversation']
|
|||
|
history = [(c['input'], c['output']) for c in conversation[:-1]]
|
|||
|
last_item = conversation[-1]
|
|||
|
converted_data.append({
|
|||
|
"instruction": last_item['input'],
|
|||
|
"input": "",
|
|||
|
"output": last_item['output'],
|
|||
|
"system": system_prompt,
|
|||
|
"history": history
|
|||
|
})
|
|||
|
# 将转换后的数据转换为JSON格式
|
|||
|
converted_json = json.dumps(converted_data, ensure_ascii=False, indent=4)
|
|||
|
|
|||
|
with open(f'./processed/{file_name}', 'w', encoding='utf-8') as f:
|
|||
|
json.dump(converted_data, f, ensure_ascii=False, indent=4)
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
### 角色扮演数据的格式转换
|
|||
|
代码同上,根据原数据集是单轮对话还是多轮对话来选择。注意设置各个角色的“system_prompt”。
|
|||
|
|
|||
|
|
|||
|
### 数据集合并
|
|||
|
为了方便处理(不想在LLaMA-Factory中添加太多的数据集),这里将所有已经处理好的 alpaca 格式的数据集(每一个数据集文件都是一个json字符串)合并成一个文件(一个大的json字符串),合并代码如下:
|
|||
|
```python
|
|||
|
import json
|
|||
|
|
|||
|
# 初始化一个空列表来存储所有数据
|
|||
|
merged_data = []
|
|||
|
file_list = [
|
|||
|
"single_turn_dataset_1.json",
|
|||
|
"single_turn_dataset_2.json",
|
|||
|
"self_cognition_EmoLLM.json",
|
|||
|
"ruozhiba_raw.json",
|
|||
|
"data.json",
|
|||
|
"data_pro.json",
|
|||
|
"multi_turn_dataset_1.json",
|
|||
|
"multi_turn_dataset_2.json",
|
|||
|
"aiwei.json",
|
|||
|
"tiangou.json",
|
|||
|
"SoulStar_data.json",
|
|||
|
"mother_v2.json",
|
|||
|
"scientist.json"
|
|||
|
]
|
|||
|
|
|||
|
# 遍历所有文件并读取数据
|
|||
|
for filename in file_list:
|
|||
|
with open(f"./processed/{filename}", 'r', encoding='utf-8') as file:
|
|||
|
data = json.load(file)
|
|||
|
merged_data.extend(data)
|
|||
|
|
|||
|
# 将合并后的数据写入新的 JSON 文件
|
|||
|
with open('emo_glm4_merged_data.json', 'w', encoding='utf-8') as output_file:
|
|||
|
json.dump(merged_data, output_file, ensure_ascii=False, indent=4)
|
|||
|
|
|||
|
print("合并完成,已保存到 emo_glm4_merged_data.json 文件中。")
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
### 将数据集配置到LLaMA-Factory 中
|
|||
|
|
|||
|
修改 LLaMa-Factory 目录中的 data/dataset_info.json 文件,在其中添加:
|
|||
|
|
|||
|
```json
|
|||
|
"emo_merged": {
|
|||
|
"file_name": "emo_glm4_merged_data.json文件的绝对路径",
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 四、微调模型
|
|||
|
在 LLaMA-Factory 目录中新建配置文件 emo_glm4_lora_sft.yaml :
|
|||
|
```python
|
|||
|
### model
|
|||
|
model_name_or_path: glm-4-9b-chat模型地址的绝对路径
|
|||
|
|
|||
|
### method
|
|||
|
stage: sft
|
|||
|
do_train: true
|
|||
|
finetuning_type: lora
|
|||
|
lora_target: all
|
|||
|
|
|||
|
### dataset
|
|||
|
# dataset 要和 data/dataset_info.json 中添加的信息保持一致
|
|||
|
dataset: emo_merged
|
|||
|
template: glm4
|
|||
|
cutoff_len: 2048
|
|||
|
max_samples: 1000
|
|||
|
overwrite_cache: true
|
|||
|
preprocessing_num_workers: 16
|
|||
|
|
|||
|
### output
|
|||
|
# output_dir是模型训练过程中的checkpoint,训练日志等的保存目录
|
|||
|
output_dir: saves/emo-glm4-epoch10/lora/sft
|
|||
|
logging_steps: 10
|
|||
|
#save_steps: 500
|
|||
|
plot_loss: true
|
|||
|
overwrite_output_dir: true
|
|||
|
save_strategy: epoch
|
|||
|
|
|||
|
### train
|
|||
|
per_device_train_batch_size: 1
|
|||
|
gradient_accumulation_steps: 8
|
|||
|
learning_rate: 1.0e-4
|
|||
|
num_train_epochs: 10.0
|
|||
|
lr_scheduler_type: cosine
|
|||
|
warmup_ratio: 0.1
|
|||
|
fp16: true
|
|||
|
|
|||
|
### eval
|
|||
|
do_eval: false
|
|||
|
val_size: 0.1
|
|||
|
per_device_eval_batch_size: 1
|
|||
|
eval_strategy: steps
|
|||
|
eval_steps: 10
|
|||
|
```
|
|||
|
|
|||
|
执行以下命令开始微调:
|
|||
|
```bash
|
|||
|
cd LLaMA-Factory
|
|||
|
llamafactory-cli train glm4_emo_lora_sft.yaml
|
|||
|
```
|
|||
|
|
|||
|
训练完成后,在 LLaMA-Factory 目录中新建配置文件 emo_glm4_lora_sft_export.yaml:
|
|||
|
|
|||
|
```python
|
|||
|
### model
|
|||
|
model_name_or_path: glm-4-9b-chat模型地址的绝对路径
|
|||
|
# 刚才emo_glm4_lora_sft.yaml文件中的 output_dir
|
|||
|
adapter_name_or_path: saves/emo-glm4-epoch10/lora/sft
|
|||
|
template: glm4
|
|||
|
finetuning_type: lora
|
|||
|
|
|||
|
### export
|
|||
|
export_dir: models/EmoLLM-glm-4-9b-chat
|
|||
|
export_size: 2
|
|||
|
export_device: cpu
|
|||
|
export_legacy_format: false
|
|||
|
```
|
|||
|
|
|||
|
## 五、合并模型
|
|||
|
|
|||
|
执行以下命令开始合并模型:
|
|||
|
```bash
|
|||
|
cd LLaMA-Factory
|
|||
|
llamafactory-cli export emo_glm4_lora_sft_export.yaml
|
|||
|
```
|
|||
|
|
|||
|
在 models/EmoLLM-glm-4-9b-chat 目录中就可以获得经过Lora微调后的完整模型。
|
|||
|
|
|||
|
模型权重已开源:[ModelScope](https://www.modelscope.cn/models/wwewwt/EmoLLM-glm-4-9b-chat/summary)
|