In order to have a better representation of our large mental models, we must have high quality datasets. To achieve this goal, we decided to use four powerful AI grand models: **Wenxin Yiyan**, **Tongyi Qianwen**, **Feifei Spark**, and **Zhipu GLM** to generate conversation data. In addition, we will enhance the cognitive depth of the dataset and improve the generalization ability of the model by adding a small number of self-cognitive datasets.
Choose four big language models, namely Wenxin Yiyan, Tongyi Qianwen, IFei Spark and Zhipu GLM, obtain the API to call the corresponding interface, and prepare to generate dialogue data.
3.**Single-turn and multi-turn dialogue data generation**
Using these four models, we generated 10,000 single and multi-turn conversation data. In doing so, we ensure the diversity, complexity and validity of our data.
Because mental activity is often complex, in order to ensure the diversity of data. We selected a total of 16 * 28 `448` scenarios for dataset generation. For specific scenario names, please refer to the configuration of the two parameters`emotions_list and areas_of_life`in config.yml.
In order to enhance the cognitive ability of the model, we specially added a part of self-cognitive dataset. These datasets help the model better understand the context and improve the naturalness and coherence of the conversation.
In order to enable everyone to play with the large model, we chose the InterLLM2-7B as our baseline model (consumer graphics cards can also be deployed fine-tuned oh).
Before dataset integration, we need to check whether the generated data has formatting errors, type mismatches, etc. We need check.py to check the data. Finally, merge_json.py is used to combine all the json into one overall json file.