OliveSensorAPI/IOTLLM/generate_data/EC_process/LDArec.py

72 lines
2.1 KiB
Python
Raw Permalink Normal View History

2024-11-11 17:32:36 +08:00
# -*- coding: utf-8 -*-
# @Time : 2024/10/24 11:10
# @Author : 黄子寒
# @Email : 1064071566@qq.com
# @File : LDArec.py
# @Project : EmoLLM
import json
import jieba
from gensim import corpora
from gensim.models.ldamodel import LdaModel
from collections import defaultdict
# 加载问答对数据
def load_qa_data(file_path):
qa_pairs = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
qa_pairs.append(json.loads(line.strip()))
return qa_pairs
# 加载中文停用词
def load_stopwords(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
return set([line.strip() for line in f])
# 使用jieba对中文文本进行分词并去除停用词
def preprocess_text(text, stopwords):
words = jieba.lcut(text) # 使用jieba进行中文分词
words = [word for word in words if word not in stopwords and len(word) > 1] # 去除停用词和长度为1的词
return words
# 生成LDA主题模型
def build_lda_model(qa_pairs, stopwords, num_topics=5):
# 处理所有问题文本
questions = [qa['input'] for qa in qa_pairs]
processed_questions = [preprocess_text(question, stopwords) for question in questions]
# 创建字典和词袋模型
dictionary = corpora.Dictionary(processed_questions)
corpus = [dictionary.doc2bow(text) for text in processed_questions]
# 训练LDA模型
lda_model = LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15)
return lda_model, dictionary, corpus
# 打印每个主题的关键词
def print_topics(lda_model, num_words=10):
for idx, topic in lda_model.print_topics(num_words=num_words):
print(f"主题 {idx}: {topic}")
if __name__ == '__main__':
qa_file = "output/train_optimized_multiple.jsonl" # 问答对文件
stopwords_file = "chinese_stopwords.txt" # 停用词文件
# 加载问答对
qa_pairs = load_qa_data(qa_file)
# 加载停用词
stopwords = load_stopwords(stopwords_file)
# 构建LDA主题模型
lda_model, dictionary, corpus = build_lda_model(qa_pairs, stopwords, num_topics=20)
# 打印主题及其关键词
print_topics(lda_model)